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Preface

This monograph is designed for scientists and graduate students in physics,
theoretical physics, mechanics, and mathematic physics. It may be considered as
a second part of a previous book (A geometric approach to thermomechanics of
dissipating continua, Birkhaüser) dealing with the thermomechanics of second
gradient continuum bodies; in the same way the present book is also essentially
based on a differential geometry of Riemann–Cartan. Variational approaches which
were voluntarily omitted in the previous book constitute the main methods applied
for deriving governing equations in the present monograph. We mainly consider
the physics of continuum which can be described by a Lagrangian function. Three
aspects of continuum physics are investigated: gradient continuum mechanics,
relative gravitation, and some introduction to coupling with electromagnetism.
Various aspects of invariance of the Lagrangian, as covariance of the formulation,
as gauge invariance of the conservation equations, are the main topics esquissed in
the monograph.

Different aspects of invariance are treated all along the manuscript. In short,
covariance (i.e. passive diffeomorphism invariance) is the invariance of the shape of
balance laws and constitutive laws equations under arbitrary change of coordinate
system. Conversely, active diffeomorphism invariance is related to gauge invariance
and Noether’s theorems. First, we consider the covariance of Lagrangian density L ,
which is assumed to explicitly depend on metric tensor and on affine connection.
Following the method of Lovelock and Rund, we apply the covariance principle to
the Lagrangian density L . It is shown that the arguments of L are necessarily the
torsion and/or the curvature associated with the connection, in addition to metric.
In a second part, we consider the active diffeomorphism invariance by using local
Poincaré gauge theory according to Utiyama method in relativistic gravitation. Most
development is based on the Lie derivative of metric, torsion, and curvature, to
obtain both the expression of the energy-momenta and the conservation laws for
general metric-affine continuum. The invariance results we obtained are then applied
to Lagrangian of second gradient continuum and to the spacetime Lagrangian in the
framework of relative gravitation. Some problems of coupling between spacetime
and matter are also addressed. The arguments of the Lagrangian are then the

vii



viii Preface

metric, the torsion, and the curvature of the spacetime, and for the matter, the
strain, the contortion (or the torsion), and the covariant derivative of the contortion
(or the torsion) based on the Levi-Civita connection associated with the metric
of the matter. Some illustrations on gravitation, electromagnetism, and continuum
mechanics in the framework of Einstein–Cartan spacetime are given.

I am grateful to the editing staff at Springer Verlag AG for their help and guidance
during writing of the manuscript. I wish to thank all my colleagues and students
with whom I have worked during these last 30 years. Among them, I would like
to mention Nirmal Antonio Tamarasselvame who contributes to the formulation
of the main covariance theorem in the Chap. 3. I would also like to mention
Gregory Futhazar, a former PhD student, and my colleague Loïc Le Marrec for
their contribution on the investigation of nonhomogeneous wave propagation with
the help of Riemann–Cartan manifolds. Some of the illustrations in Chap. 5 were
obtained during a common research work.

Last but not least, I particularly want to thank my wife Oly, my children Rindra,
Herinarivo, and Haga, to whom this book is dedicated, for their understanding and
their constant encouragement.

Cesson-Sévigné, France Lalaonirina R. Rakotomanana
July 2017
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Chapter 1
General Introduction

1.1 Classical Physics, Lagrangian, and Invariance

The motion and in a general manner the evolution of a physical system must be
described with respect to an arbitrary coordinate system, and the laws of physics
should be independent on the choice of the reference frame. These are the two
most basic invariance requirements for any physics model. For non relativistic
physics, namely the classical mechanics, these requirements may be classified into
Galilean Invariance and covariance e.g. Rosen (1972). Galilean invariance is related
to the notion of class of inertial frames of reference which move with constant
relative velocity each other, and related to the homogeneity of time. The covariance
means an invariance of the shape of the model equations under general coordinate
transformations. Covariance is a mathematical condition and does not impose any
restrictions on the contents of the laws of physics.

In the framework of special relativity, two invariance properties, namely invari-
ance with respect to a change of reference frame and covariance, also constitute
the basic requirements of the theory. In such a case, Galilean transformations are
merely replaced by Lorentz transformations in a four-dimensional spacetime. In that
way, mechanics is compatible with electromagnetism and, additionally, absolute
constant light speed is assumed. In a broad sense, physical quantities of special
relativity are modeled by scalars, four-vectors, and four-tensors. In most cases, they
may be considered as arguments of a Lagrangian function L which defines the
overall mathematical model. Given the concept of reference frame, the key property
of such equations is that if they hold in one inertial frame, then they should hold in
any inertial frame. In the same way, if all the components of a tensor vanish in one
inertial frame, they should vanish in every inertial frame.

For general relativity theory, or gravitation theory, the covariance still means the
invariance of the governing equations (say same shape for governing equations) with
respect to any change of coordinate system, following a diffeomorphism (a group
of transformations larger than translation and rotation group). The invariance with

© Springer International Publishing AG, part of Springer Nature 2018
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2 1 General Introduction

respect to any reference frame is also the second invariance requirement. The second
invariance condition leads to gauge invariance.

Most of field equations governing theoretical physics are deduced from a varia-
tional principle after defining a suitable Lagrangian density L and its arguments.
For relativistic gravity and cosmology see e.g. Clifton et al. (2012) for recent and
quasi-exhaustive review. To start with, let dqi := F iα dx

α be a local coordinate
change (or a local map), where F iα are called tetrads or triads for three dimensional
geometry e.g. Marsden and Hughes (1983). In fact, a frame of reference may be
identified with a set of four vectors {eα(xμ) := F iα(x

μ) êi}, where êi is an given
set of orthonormal base, and {eα(xμ), α = 0, 1, 2, 3, 4} is defined in any given
point of the spacetime. In a Minkowskian spacetime or an Euclidean space, an
induced metric is defined as gαβ := ĝij F

i
αF

j
β where ĝij are components of space

or spacetime metric. Local map dqi := F iα dx
α cannot be always integrated. The

use on multivalued tetrads as local transformations was done in Kleinert (2000)
on the basis of the so called nonholonomic mapping principle to generate twisted
and curved spacetime. The method was inspired from the plastic deformation of
crystals where dislocations and disclinations are present as defects. In such a
case the transformations are not single-valued (Kleinert 2008), almost everywhere
F iα(x

μ) and its inverse Fαi (x
μ) are elements of GL+n (R) at each point xμ. It is

therefore usual to define connection coefficients, as extension of the usual definition
Γ
γ
αβ := F

γ
i ∂βF

i
α associated to the tetrads. In relativistic gravitation, several

theories were built upon various forms of the Lagrangian density function e.g. Carter
(1973), Clifton et al. (2012), Taub (1954). The arguments of Lagrangian density
function L in Einstein gravitation is essentially based on the curvature of the
spacetime, which expresses the strong relation between gravitation and geometry.
In the original paper of Einstein, the curvature is obtained solely with metric
components and their first and second derivatives. Later this theory of curvature
gravitation is improved in some sense to include the torsion for capturing quantum
effects in the presence of high energies e.g. Hammond (2002), Olmo and Rubiera-
Garcia (2013), or to model vorticity in fluid flows e.g. Garcia de Andrade (2005),
and continuum with microstructure e.g. Kleinert (2008). Torsion of connection is
a variable independent of the metric since it is purely obtained by means of an
affine connection Γ̂ γαβ of the space (resp. spacetime), which is a priori not related
to the metric components ĝαβ . Introduction of the metric and the affine connection
as independent arguments of the Lagrangian constitutes the basics for the Palatini
formulation of relativistic gravitation e.g. Koivisto (2011). Earlier as 1928, Cartan
proposed spacetime with torsion and curvature to support the spacetime geometry
e.g. Cartan (1986). The first results were obtained by Cartan in the formulation of
Newtonian gravitation in this pure affinely framework e.g. Ruedde and Straumann
(1997), which extended the well-known special relativity theory. Indeed original
special relativity does not include gravitation effects but rather electromagnetic
waves. The coupling of spacetime and matter (assumed to be continuous or
not) then becomes another challenge in the formulation of electromagnetic fields
e.g. Dias and Moraes (2005), Plebanski (1960), Prasanna (1975a), of relativistic



1.1 Classical Physics, Lagrangian, and Invariance 3

gravitation e.g. Anderson (1981), Hehl et al. (1976), and particularly of the so-called
extended bodies under gravitation e.g. Dixon (1975), Ehlers and Geroch (2004),
Papapetrou (1951). Spacetime and matter have their own geometry backgrounds.
To separate spacetime gravity (G) and matter (M), the following form was proposed
L := LG(ĝαβ, Γ̂

γ
αβ) + LM(ĝαβ , gαβ, Γ

γ
αβ,Φ), where gαβ , Γ γαβ (with hat for

spacetime or without hat for matter), and Φ are metric tensor, connection—
possibly independent of the metric—and some matter field respectively e.g. Forger
and Römer (2004), Hehl et al. (1995), Petrov and Lompay (2013), Sotiriou and
Faraoni (2010), Utiyama (1956), Vitagliano et al. (2011). Variable Φ is a priori
introduced to analyze multi-physics phenomenon as electromagnetic fields when
necessary, but the presence of metric ĝαβ in the matter Lagrangian is necessary
for the theory to be viable e.g. Lehmkuhl (2011). Connections are not necessary
the same for matter and for space (or for spacetime) e.g. Amendola et al. (2011),
Defrise (1953) as implicitly assumed in classical elasticity e.g. Marsden and Hughes
(1983). On the one hand, classical elastic material may evolve in a spacetime with
gravity, meaning that the matter connection Γ γαβ is affinely equivalent to Euclidean
connection (with zero torsion and curvature), whereas the spacetime connection
Γ̂
γ
αβ may have non zero torsion and curvature (Defrise 1953; Manoff 1999). On the

other hand, continuum with dislocations and disclinations density is endowed with
connection Γ γαβ with nonzero torsion and/or curvature but evolves within a classical
Newtonian spacetime with Euclidean connection e.g. Rakotomanana (2003). For
short, analysis of continuum motion always requires the simultaneous consideration
of two manifolds: the spacetime and the body (Defrise 1953). This suggests that
in principle the metric and the connection which are arguments of the gravity
Lagrangian densityLG are not the same as the metric and the connection, arguments
of the matter Lagrangian density LM e.g. Amendola et al. (2011), Manoff (1999).
Generalized continuum in the presence of dislocations and disclinations field may
be related to relativistic mechanics in e.g. Baldacci et al. (1979), where the concept
of micro universe (microcosms) was introduced to model plastic behavior due to
dislocations. Some authors also related defects of crystal to the Einstein universe
as a Cosserat continuum with defects e.g. Kleinert (1987). Early papers and recent
works described the defects with anholonomic configuration spaces by using the
multiplicative decomposition e.g. Bilby et al. (1955), Clayton et al. (2004). This
opens the question of generalized transformations of continuum with evolving local
topology e.g. Verçyn (1990). As alternative formulation of continuum mechanics
where strain and stress tensors are related by constitutive laws, often derived from
a strain energy function, which is merely a “static” case of matter Lagrangian
density LM . For generalized continuum with micro-structure, strain energy density
is assumed function of strain, first gradient, and second gradient of strain e.g.
Mindlin (1964, 1965). They are based on the torsion and curvature of intermediate
non Euclidean manifolds. A brief overview of Lagrangian involved in relativistic
gravitation and in strain gradient continuum shows that they commonly take the
form: LG = LG(gαβ, ∂λgαβ, ∂μ∂λgαβ), where gαβ are the metric components and
∂λgαβ , and ∂λ∂μgαβ are their first and second derivatives with respect to space (or
spacetime) coordinates. To satisfy formulation invariance, it is necessary to review
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the mathematical requirement and physical principle underlying the derivation of
all these constitutive laws and corresponding fields equations for either gradient
elasticity or relativistic gravitation.

1.2 General Covariance, Gauge Invariance

The general covariance of field equations means rigorously invariance with respect
to the action of the group of all spacetime diffeomorphisms. Concept of general
invariance then includes two aspects in physics theory: a passive diffeomorphism
which is a change of coordinates, and an active diffeomorphism which is a gauge
transformation acting on tensor fields of the theory e.g. Manoff (1999). Passive
diffeomorphism (covariance) is a trivial requirement stating that it should be
possible to use different coordinates to describe one physical situation. Covariance
dictates that the laws of physics (conservation laws, and constitutive laws) keep
the same form, regardless of the coordinate system. Invariance with respect to
an active diffeomorphism implies that any solution of the field equations can be
transformed and still satisfies the same, untransformed field equations. Accordingly,
these two aspects of invariance apply to both relativistic and classical mechanics
e.g. Anderson (1971), Frewer (2009): invariance of Lagrangian function L with
respect to passive diffeomorphism e.g. Antonio and Rakotomanana (2011), and
invariance with respect to active diffeomorphism one e.g. Ali et al. (2009), McKellar
(1981). The gauge aspect arises when deriving the physical laws with respect to
a class of reference frames: Lorentzian transformations for relativistic gravitation
and Galilean transformations for classical mechanics. An action S defined from
a Lagrangian L is proposed and its invariance under some continuous set of
spacetime transformations leads to local and/or global conservation laws e.g.
Forger and Römer (2004). In this way, Noether’s theorem classically establishes
correspondence between the symmetries and the conservation laws of physics
theory based a variational principle e.g. Lovelock and Rund (1975), Pons (2011).
Historical analysis of these two aspects of invariance may be found in e.g. Brading
and Ryckman (2008), Frewer (2009), Norton (1993). The confusion between
gauge invariance with respect reference frames—physical requirement—and the
covariance with respect to coordinate change—mathematical requirement—was a
source of long lasted dispute, in the scope of relativistic gravity (Earman 1974).
As earlier as 1956 Utiyama formulated relativistic gravitation as a gauge theory
(Utiyama 1956). Since then, numerous extended models have been proposed. In
1961, Kibble started with the invariance of a Lagrangian function with respect
to Lorentz transformations (in flat Minkowskian spacetime) (Kibble 1961), and
showed that the arguments of the free Lagrangian could be geometrically interpreted
as affine connection coefficients. He stated that existence of gravitational field is
obtained from the Lorentz invariance of the Lagrangian. It was also shown in Kibble
(1961) that translational invariance (in addition to Lorentz invariance) imposes that
the Lagrangian can not depend explicitly of the coordinates (xμ). Application of
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Fig. 1.1 Motion of a body B is defined with respect to a reference (either R or R′). In each of
these references, a coordinate system associated to coordinate curves (either xμ or yμ) may be
used to define the position of the body with respect to the reference. Links (1) schematize either
the motion of the body B → B′ or the change of reference frame R → R′ . Links (2) represent
the relativity of the motion of body B with respect to R or to R′ . Links (3) represent the change
of coordinate system for either the body B or the reference frame R. The goal is to investigate
the invariance of the formulation of the physics of such a body B independently on the choice of
either the reference or the coordinate system within each reference

translational invariance for elastic continuum matter with dislocations may be found
in e.g. Lazar and Anastassiadis (2008), Malyshev (2000). The idea is to search for
Lagrangian functions which are gauge invariant, in the sense that Lagrangian is
invariant under spacetime diffeomorphisms, (Fig. 1.1) and additionally under local
Lorentzian transformations e.g. Bruzzo (1987), Hehl et al. (1976), Kleinert (2008),
Utiyama (1956). The Lorentz transformation is replaced by Galilean transformation
for non relativistic mechanics e.g. Havas (1964). In any case, the complete Poincaré
transformations group is considered e.g. Cho (1976c), Pons (2011), Zeeman (1964).
In this later reference, Zeeman demonstrated that the causality principle induced the
Lorentz group of invariance.

For classical continuum mechanics and more generally for classical contin-
uum physics, three aspects of invariance hold e.g. Rosen (1972), Svendsen and
Betram (1999): (a) Euclidean Frame Indifference means invariance with respect to
Euclidean observers; (b) Covariance is the previous passive diffeomorphism invari-
ance; (c) Rigid Motion Indifference is the invariance with respect to superimposed
rigid body motions. Covariance is related to a mathematical function whereas the
term “indifference” is related to Euclidean observers (see Svendsen and Betram
1999). For gradient material evolving within a Newtonian spacetime, the material
frame indifference was further investigated, where they extended the concept of
material isomorphism of Noll for strain gradient materials and the multiplicative



6 1 General Introduction

decomposition e.g. Le and Stumpf (1996). For continuum moving in Euclidean
space, Svendsen and Betram (1999) show that any two of previous principles
automatically imply the third. Consequently, covariance condition is a necessary to
ensure the material frame-indifference of constitutive laws. Covariance and frame-
indifference have been compared in Kempers (1989) where the classical frame-
indifference principle was shown to follow from covariance when reduced to non
relativistic limit, and when the inertial terms may be neglected (Frewer 2009). Then
for situation where inertia is absent or can be neglected, the passive diffeomorphism
invariance of either relativistic or non relativistic continuum mechanics includes the
frame-indifference principle e.g. Kempers (1989). For the sake of the completeness,
on the one hand for relativistic gravitation, diffeomorphism invariance applies to
four dimensional spacetime instead of only three-dimensional space (subclass of
diffeomorphisms applied only to space is called internal transformations e.g. Krause
1976). On the other hand, the Euclidean-Frame-Indifference should be replaced by
Lorentz transformations e.g. Bruzzo (1987), McKellar (1981), Utiyama (1956) to be
compatible with electromagnetism. Applying the invariance on a 2-covariant tensor-
valued function, depending on metric, its first and second derivatives (linear with
respect to this later), Cartan deduced the Einstein’s gravitation equations in terms of
curvature (Cartan 1922). This is a key point for understanding 80 decades of debate
on the general covariance propounded by Einstein for with the diffeomorphism is
applied in the spacetime manifold but not on the space only e.g. Norton (1993),
Rosen (1972). For completeness, the concept of spacetime is actually related to the
concept of affine connection which endows the spacetime manifold (Kadianakis
1996). One of the main problems is to define how the twisted and curved spacetime
is coupled with the gradient continuum matter in general gravitation. Some aspects
of this coupling are still open and development of Lagrangian function if any
together with their associated conservation laws requires further studies e.g. Kleinert
(2000). The geometric background would be the Riemann–Cartan manifold e.g.
Nakahara (1996). The accounting of torsion and curvature in the derivation of
constitutive and conservations laws of some domains of the continuum physics are
developed in the present book.

1.3 Objectives and Planning

Conversely to usual continuum physics, strain gradient continuum physics uses the
metric and the gradient of metric as geometric variables. Most of the strain gradient
continuum models use an Euclidean connection which derives from metric as Levi-
Civita connection to calculate the derivatives of various tensor variables involved in
the models. However, there exist some approaches based on Cartan geometry with
a connection which does not derive from the metric and for which the associated
torsion and curvature do not necessarily vanish. The main goal of the present book
is to investigate the invariance aspects and their consequences on the derivation of
the continuum mechanics and the relativistic gravitation laws beyond the Riemann
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spacetime and the classical continuum mechanics. We aim to apply the passive and
active diffeomorphisms on Lagrangian function L to obtain a set of arguments
satisfying both the covariance and gauge invariance. First, we apply the covariance
on Lagrangian function of the type L (gαβ,∇γ gαβ,∇γ∇λgαβ), in an arbitrary
coordinate system (xα) utilizing the covariant derivative with respect to an affine
connection ∇. Covariance deals with either LG or LM . Second we consider the
active diffeomorphism-invariance requirement to derive the field equations resulting
from the local Poincaré gauge invariance, by means of Lie derivative along an
arbitrary vector field ξα . The adopted method for conservation laws derivation will
be based on the additional decomposition of the Lagrangian variation of a primal
variables as metric, torsion, and curvature into a Eulerian variation and the Lie
derivative variation of these variables. We accordingly deduce the corresponding
conservations laws. Some preliminary examples such as gravitational and electro-
magnetic waves and waves within nonhomogeneous twisted continuum are treated
in this paper particularly devoted on the coupling of spacetime and microstructured
continuum matter.

After general introduction on Lagrangian function and general purposes on the
types of invariance such as covariance and gauge invariance in this chapter, Chap. 2
is devoted with the definition of Lagrangian function. The geometric background
of the continuum mechanics and relativistic gravitation is reminded, namely metric,
torsion and curvature within a continuum bodies and within spacetimes. Relation
between the invariance of Lagrangian and the Euler–Lagrange equations is intro-
duced. Some examples of Lagrangian in the framework of continuum mechanics
and gravitation are given.

Chapter 3 contains an essential part of this book since it deals with the covariance
of Lagrangian depending on the metric and its two first derivatives. The main
result of this chapter shows that the covariance of such a Lagrangian induces that
the Lagrangian should depend on the metric, the torsion and the curvature of the
connection. It clearly shows that the arguments of the Lagrangian defined by a
restrictive theorem due to invariance with respect to the choice of metric, and on
the choice of the connection on the manifold.

Gauge invariance is treated in Chap. 4. The Lagrangian is assumed to depend
on the metric, the torsion and the curvature of the continuum body and of the
ambient spacetime. Poincaré’s gauge invariance is used to obtain conservation laws
of both continuum mechanics and relativistic gravitation. The concept of metric
strain, torsion strain, and curvature strain is introduced. They are mainly based on
the contortion tensor for metric compatible connection. Lie derivative constitutes
the main tool for deriving the conservation laws.

We give some examples and applications in the Chaps. 5 and 6. Introductory
aspects of gravitational are reminded in Chap. 5 where we give applications in the
domain of wave propagation within non homogeneous continuum, and some recall
on the gravitational waves. The extension of the geodesic deviation in Riemannian
spacetime to auto parallel deviation for gravitation field within Einstein–Cartan
spacetime is obtained allowing us to consider the influence of torsion on a particle
motion. Some examples of twisted and curved continuum body are treated in details.
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A large part of the Chap. 6 is devoted to the coupling between electromagnetism
and gravitation, namely in the framework of Einstein–Cartan theory. Various forms
of the Maxwell’s equations are developed on either connection-based formula-
tion or form-like formulation. The coupling of gravitation and electromagnetism
is effective by choosing a Lagrangian function involving gravitation and elec-
tromagnetic field. A symmetric energy-momentum tensor field is obtained by
applying Lagrangian variation, then the Poincaré’s invariance allows us to derive
the conservation equations including Maxwell’s equations, energy conservation and
momentum equation. Our approach is heavily based on the Lagrangian formulation
and then, the coupling of gravitation and electromagnetism is considered by
investigating the Einstein–Maxwell’s equations of fields. Some relations between
torsion filed and the cosmological constant are developed in this chapter (Anti-de
Sitter spacetime).



Chapter 2
Basic Concepts on Manifolds,
Spacetimes, and Calculus of Variations

2.1 Introduction

In the present book, we are interested in continuum physics namely mechanics,
gravitation, electromagnetism and their mutual interaction. Most of field equations
governing theoretical physics are deduced from a variational principle after defining
a suitable Lagrangian density L and its arguments. Three steps are considered
for deriving the field equations governing their evolution and mutual interaction.
The first focus on the continuum geometry and by the way the spacetime with the
concept of reference frame where physics happen.

Extension of the Galilean Principle of Relativity stating that the laws of mechan-
ics have the same form in all inertial frames, leads the two postulates of special
relativity of Einstein conciliating mechanics and electromagnetism: (a) Physical
laws have the same form in all inertial frames (covariance), and (b) the light speed
is finite and is the same in all inertial frames (causality). The two postulates induce
the concept of space-time, and to group of transformations of frames of reference.

For accounting for the presence of gravitation within the previous flat spacetime,
Einstein arrives to the principle of equivalence stating that any non-inertial frame is
equivalent to a some gravitational field, and this is true locally for non homogeneous
field. The spacetime becomes curved with an event-dependent metric tensor. More
generally, the derivation of more and more sophisticated spacetimes may be done
by considering first the deformation of the flat Minkowski spacetime R4 by defining
a time and position-dependent pseudo-metric tensor to give a curved Einstein–
Riemann spacetime. This spacetime is curved with a non zero curvature tensor
entirely defined by the metric and its derivatives. The second step would be
considering in addition the deformation of the connection of the Einstein–Riemann
spacetime to give an Einstein–Cartan spacetime which is twisted and curved. In such
a case the metric and the connection are two independent variables.
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The goal of this chapter is to give some introductory elements of differential
geometry and of variational calculus to on spacetime, and more generally on
manifolds.

2.2 Space-Time Background

Space and time may be considered as the most fundamental concepts of physics and
even of natural sciences.

2.2.1 Basics on Flat Minkowski Spacetime

For classical mechanics’ theory, the Newton’s laws of gravitation are based on the
assumption on the existence of an absolute three dimensional space and an absolute
monodimensional time. In other words, classical mechanics of Newton considers
that space is distinct from body and that time flows uniformly without regard to
whether anything else happens in the world. Accordingly, for each time t , Newton’s
laws of gravitation assume an absolute distance function between two points defined
with an Euclidean metric of the space. The spacetime of classical mechanics is
defined by a four-dimensional manifold defined as a product of a monodimensional
Euclidean time with a three-dimensional Euclidean space T × E . Absolute space
E and absolute time T do not depend upon physical events happening inside. The
spacetime coordinates can be written as

(
t, x1, x2, x3

)
. Both of them have their

proper metric for measuring the flow of time |t − t0| and the distance ‖MM0‖2 :=
(x1 − x1

0)
2 + (x2 − x2

0 )
2 + (x3 − x3

0)
2 between points respectively and connection

which relates the values of local field, namely the velocity field say v(t,M), at two
arbitrary neighboring pointsM(t, xi) and M̃(t, xi + dxi) of this spacetime.

A first major modification of the concept of space and time was the relativization
of time. Special relativity thus lies upon two cornerstones: (a) the extended relativity
principle which assumes first the existence of inertial or Galilean frames G , just as
in classical mechanics, and second that all respect to these frames, all physics laws
(especially electromagnetism) should be invariant; (b) the light speed axiom assum-
ing that the same value of the light speed holds in all Galilean frames, irrespective
of the emission properties of the source. Usually, c := 299,′792.458 [km s−1] may
be taken as the light speed. Implicitly it then assumes, as in classical mechanics,
that there is an absolute spacetime, set of events with a spacetime coordinates (xμ)
interpreted as coordinates of a four-dimensional affine space. However, space and
time merge into a spacetime concept. Spacetime is described as a four-dimensional
continuum where any event can be described by coordinates (x0 = ct, x1, x2, x3)

of R4, where index 0 stands for time.
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Definition 2.1 (Minkowski Space) A Minkowski space M is the vector space R
4

endowed with an indefinite inner product given by:

< x, y >:= x0y0 − x1y1 − x2y2 − x3y3 (2.1)

where xμ are the coordinates of x ∈ R4, and yν the coordinates of y ∈ R4.

To avoid lengthy equations including the light speed c, it is sometimes worthwhile
to define the spacetime coordinates (x0 := ct, x1, x2, x3), and therefore to have
previous metric ĝαβ := diag {+1,−1,−1,−1}) for Minkowskian spacetime M .
Minkowski spacetime is the basic geometric background of flat (absence of gravita-
tion) space and time. For ambient spacetime, a uniform metric holds for the entire
Euclidean space ĝij := −diag {+1,+1,+1} and ĝαβ := diag({+1,−1,−1,−1})
for Minkowski spacetime.1

Remark 2.1 To separate the space and the time, and then to point out the asymptotic
behavior of the spacetime for small velocity of matter compared to that of the light,
in a (flat) Minkowskian spacetime, one can define a global coordinate system {x0 :=
t, x1, x2, x3} in which the metric tensor ĝαβ , and its inverse ĝαβ have (diagonal)
matrix components e.g. Havas (1964):

ĝαβ := diag
(

1/c2,−1,−1,−1
)
, ĝαβ := diag

(
c2,−1,−1,−1

)
(2.2)

Havas introduced two separated space and time metrics by considering the following
limits (Havas 1964):

ĥαβ := lim
c→∞ ĝ

αβ(c) · c2 � diag (0,−1,−1,−1) , c >> 1 (2.3)

t̂α t̂β = t̂αβ := lim
c→∞ ĝαβ(c)/c

2 = diag (1, 0, 0, 0) (2.4)

Reference manifold (a four dimensional “spacetime continuum”) is a priori
assumed e.g. Amendola et al. (2011) for relativistic mechanics, and e.g. Kadianakis
(1996) for classical mechanics. The particular choice of reference body with
Euclidean (resp. Minkowskian) metric assumes the existence of an implicit flat
configuration and constitutes an underlying constitutive assumption e.g. Clayton
et al. (2004), Le and Stumpf (1996). Consider two events x := (xμ), and y := (yμ)
of the spacetime M . It is possible to define a partial ordering on the Minkowski
manifold M , denoted x < y if the event x can influence the event y. We remind that
x < y if y−x is a time vector (see below)< y−x, y−x >∈ R+∗ is strictly positive
oriented to the future e.g. Zeeman (1964).

1It is worth noting that covariant components of event hold as (x0 = ct, x1 = −x1, x2 =
−x2, x3 = −x3) in this flat Minkowskian spacetime M .
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2.2.2 Twisted and Curved Spacetimes

In the presence of gravitation or external forces for material continuum mechanics,
spacetime/material continuum can be divided into small pieces called “micro-
cosms” e.g. Gonseth (1926), and these microcosms are glued together smoothly
(without voids). In the special relativity theory, the spacetime has the structure of
Minkowskian space M . In the general relativity theory, the spacetime is a set of
(infinite number of) flat microcosms in which the special relativity holds (principle
of equivalence). Global properties are different from those of small microcosms
to give the need of differential manifold as underlying background geometry e.g.
Nakahara (1996). The results are that spacetime with gravitation is endowed with
time and position (event) dependent metric tensor gαβ(xμ). In a more systematic
method, the flat Minkowski spacetime may be twisted and curved by using a
multi-valued coordinate transformations e.g. Kleinert (2000). This method called
Nonholonomic Mapping Principle (NMP) is analogous to the method of Volterra
dislocations usually applied to model the creation and evolution of dislocations
and disclinations of crystalline solids e.g. Bilby et al. (1955), Ross (1989). Details
for these spacetimes will be developed later in the present book, together with an
introduction to the variational procedure for obtaining the governing equations.

2.3 Manifolds, Tensor Fields, and Connections

Relativity principle cannot be replaced by the covariance. Some confusion may
appear between change of reference frames and (passive) change of coordinate
systems e.g. Bain (2004). This latter does not play role in the spacetime geometry for
neither classical mechanics, nor Riemannian/Cartan/ or Riemann–Cartan spacetime
in relativity. Coordinate systems have no physical meaning whereas the frame of
reference is a fundamental concept in physics theory (Principle of Relativity).

2.3.1 Coordinate System, and Group of Transformations

Continuous bodies and spacetimes are often described by three or four dimensional
continua respectively. Mathematical models of continuum mechanics and rela-
tivistic gravitation then dwell upon the concept of neighborhoods and continuous
mappings. This naturally leads to the concept of manifold e.g. Lovelock and Rund
(1975), Wang (1967). Namely, in Galilean view, space is a tri-dimensional manifold
and time is a one dimensional manifold, they exist separately. In the Minkowskian
point of view, for relativistic physics, spacetime is a four-dimensional manifold.
In both theories, manifolds are differentiable. After introducing manifolds which
is the background of continuum geometry and kinematics, two variables constitute
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the basis of spacetime and continuous material model: the metric tensor and the
connection.

2.3.1.1 Manifolds, Tangent Space, Cotangent Space

We remind some basic elements of differentiable manifold. Extensive developments
of manifold may be seen elsewhere e.g. Nakahara (1996). Briefly, we fixe once
and for all the n-dimensional vector space E (reference body). An n-dimensional
manifold B, embedded onto E, is a point set which is covered completely by a
countable set of neighborhoods U1, U2, . . ., such that each point P ∈ B belongs
to at least one of these neighborhoods. Uk is also called coordinate patch. The
manifold B is said differentiable if there is at least one covering of B by a set of
coordinate patches {Uk, } such that in each overlap of the patches, the coordinates
are mutually related by differentiable functions. For two given manifolds, say B1
and B2, a diffeomorphism is an invertible mapping ϕ : B1 → B2, such that ϕ
and its inverse ϕ−1 are both C∞, meaning that the mappings are continuous and
infinitely differentiable. For the case where B1 = B2 = B, any mapping ϕ is
invertible and provided that ϕ ∈ C∞, then it is a diffeomorphism. A coordinate
system is defined on each Uk such that one may assign in a unique manner n real
numbers x1, . . . , xn to each point P ∈ Uk. As P ranges over Uk , the corresponding
numbers x1, . . . , xn range over an open domain Dk of E. It thus exists a one-to-
one mapping of each Uk onto Dk , this mapping will be assumed continuous. The
numbers x1, . . . , xn are called the coordinates of P . In the case where U1 ∩U2 �= ∅
there are two sets of coordinates associated to a same point P ∈ U1 ∩ U2
(Fig. 2.1).

In sum, the manifold B is then provided with a family of pairs {(Uk, ϕk}
such that for any two coordinate patches Un and Um such that Un ∩ Um �= ∅,
the map ϕn (ϕm)−1 : ϕm (Un ∩ Um) → ϕn (Un ∩Um) is infinitely differentiable.
ϕn are called coordinate functions (or coordinates), and for any point P ∈ Uk ,
represented by

(
x1(P ), · · · , xn(P )). In practise, the differentiability of manifold

may be approached by means of change of coordinate system.

Fig. 2.1 Overlapping of
coordinate patches. The point
P ∈ B of the manifold is
reported as being associated
to two overlapping coordinate
patches U1 and U2. In the
overlap, there will be points
that have coordinates from
each coordinate patches. Sets
D1 := ϕ1(U1) and
D2 := ϕ2(U2) belong to E
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Fig. 2.2 Function f on
manifold B. The function
f : P ∈ B → R is defined
by its coordinate presentation
f ϕ−1 : (x1, · · · , xn) ∈
R
n → f (P ) ∈ R

Calculus on manifold of dimension n starts with the function and tangent space.
A function on manifoldB denoted f : B → R is a (smooth) map fromB to real R.
It is represented on Fig. 2.2 together with its coordinate presentation. Let consider
now a curve on the manifold defined by the function C : [a, b] ∈ R → B and a
function f : B → R. Say a real t = 0 ∈ [a, b]. The tangent vector of the curve
at C (0) is the directional derivative of a function f [C (t)] along the curve C at the
point t = 0:

d

dt
f [C (t)] |t=0 = ∂

(
fϕ−1(xμ)

)

∂xα

dxα {C (t)}
dt

|t=0 (2.5)

where the “partial derivative” of f in the composition of functions is practically
expressed in terms of the partial derivative of its coordinate presentation. It is worth
to define the tangent vector u at P of B as:

uα := dxα {C (t)}
dt

(2.6)

and use a synthetic expression of the relation (2.5):

d

dt
f [C (t)] |t=0 = u [f ] = uα ∂f

∂xα
(2.7)

Definition 2.2 (Tangent Space) All the equivalent classes of the curves Ck , and by
the way all the tangent vectors uk at point P , from a vector space called the tangent
space of B at point P , it is denoted TPB.

The base of the tangent space of dimension n is denoted by:

fα := uα ∂

∂xα
, α = 1, · · · , n (2.8)

Definition 2.3 (Cotangent Space) The cotangent space at P of the manifold B is
the set of linear function from TPB→ R. It is denoted T ∗PB.
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An arbitrary element of the cotangent space ω ∈ T ∗PB is also called dual vector. the
basic example of dual vector is the differential df of a real function:

df = ∂f

∂xα
dxα (2.9)

Then the action of the linear map df ∈ T ∗PB on any vector u ∈ TPB is defined by
inner product:

(df,u) = u [f ] = uα ∂f
∂xα

(2.10)

The base of the cotangent space is denoted here {dxα} allowing us to decompose any
1-formω on the manifoldB asω = ωβdxβ , whereωβ are the covariant components
of ω.

2.3.1.2 Change of Coordinate System

Let (yi) (Latin indexes) and (xα) (Greek indexes) corresponding coordinate systems
respectively in U1 and U2. Latin indexes and Greek indexes will be used to distin-
guish two different coordinate systems. The transformation between coordinates
(yi) and (xα) is diffeomorphism, more precisely a passive diffeomorphism,

yi = yi(xα), xα = xα(yi) (2.11)

J αi =
∂xα

∂yi
, J αij =

∂J αi

∂yj
= ∂2xα

∂yi∂yj
, J αijk =

∂J αij

∂yk
= ∂3xα

∂yi∂yj ∂yk

We also have that for any coordinate system (yi), and for any permutation σ ∈ Sn

∂n

∂y1 . . . ∂yn
= ∂n

∂yσ(1) . . . ∂yσ(n)

Einstein Convention When a lowercase index and a upper case one such as j , k,
l,. . . appear twice in a term then summation over that index is applied. The range of
summation is 1,. . . , n, the letter n is exceptionally excluded from the summation.
We have

∂xα

∂yi

∂yi

∂xβ
= J αi Aiβ = δαβ ,

∂yi

∂xα

∂xα

∂yj
= AiαJ αj = δij

with respectively summation (Einstein) over i and α from 1 to n.
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Let U an open subset of R3, U := {(r, θ, ϕ) ∈ R
3 : 0 < r, 0 < θ < π, 0 <

ϕ < 2π
}

As illustration, let consider the transformation of spherical to Cartesian
coordinates (see Fig. 2.9) for the definition of coordinates:

⎧
⎨

⎩

x1 = r sin θ cosϕ
x2 = r sin θ sin ϕ
x3 = r cos θ

, J iα =
⎡

⎣
sin θ cosϕ r cos θ cosϕ −r sin θ sin ϕ
sin θ sinϕ r cos θ sin ϕ r sin θ cosϕ

cos θ −r sin θ 0

⎤

⎦

(2.12)

where J iα is the Jacobian matrix associated to the change of coordinates. This
transformation is not onto but it is a diffeomorphism onto its image. The determinant
is Det(J iα) = r2 sin θ > 0, positive for r > 0 and 0 < θ ≤ π .

2.3.1.3 Examples of Group of Transformations

Both the body and the spacetime are described by manifolds: the continuum of
dimension three, and the spacetime of dimension four e.g. Defrise (1953), Kadi-
anakis (1996). Here some fundamental examples for coordinate system changes
where change of coordinates may include change of reference frames e.g. Bain
(2004). For the sake of simplicity, let us denote x0 := ct the time variable
and xi = (x1, x2, x3) the space coordinates. The spacetime coordinates hold as
xα = (x0, x1, x2, x3).

The Leibniz group that is the group of transformations: yj := Rji (x0)xi+uj (x0)

for i, j = 1, 2, 3, and y0 := x0 + u0 where Rji (x
0) is an orthogonal transformation

depending on time variable, and uα = (u0, u1, u2, u3). These are transformations
between rigid Euclidean reference frames with arbitrary rotating and arbitrary
accelerating with respect each other e.g. Bernal and Sanchez (2003) (Fig. 2.3).

The second is the Maxwell group represented by the transformations: yj :=
R
j
i x

i + uj (x0) for i, j = 1, 2, 3, and y0 := x0 + u0 where Rji is a uniform
orthogonal transformation, independent of time variable. Maxwell group includes
fixed rotating frames but arbitrary accelerating frames.

The third example consists of Newton–Cartan transformations group: yj :=
R
j

i x
i + vj x0+ uj , for i, j = 1, 2, 3, and y0 := x0+ u0 where vj = (v1, v2, v3) is

a constant velocity. This is the Galilean group (or Galilean Lie group; Rosen 1972)
with 10 parameters. The basic root of the design of Galilean transformation comes
from the “intuitive” observation that the velocity of a material point as seen by
observers at rest in two reference frames differs and depend on the relative constant
velocity of the two frames, linearly.

Role of these groups in regards of constitutive laws may be found in e.g.
Rakotomanana (2003) when considering the principle of material indifference.
An extension of the Newton–Cartan group is the local Galilean group Rji (x

k)
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x1

x2

x3

M

x

B

Σ

O

x’1

x’2

x’3

x

Σ'

O’

Fig. 2.3 Change of spacetime coordinate system xμ → x
′α(xμ). The interpretation is a “passive

diffeomorphism” on this figure, where the material point M moves with respect to the reference
system Σ—along the dotted trajectory—with coordinates (x

′α) with respect to moving reference
Σ ′ (in red) (time origin change, translation, and rotation)

and uj (xk), where the linear transformation and the translation depend on space
coordinates but not on the time variable x0.

Another important group is that of internal transformations. We can attach
numerous coordinate systems to one reference frame. For that purpose, it is worth
to consider the internal transformations e.g. Krause (1976):

y0 = y0(x0, x1, x2, x3), yj = yj (x1, x2, x3), j = 1, 2, 3

where x0 and y0 correspond to time variable in each coordinate system. Leibniz and
Maxwell groups are particular cases. The first equation expresses a synchronization
of the time measure (clock) within frame of reference, whereas the second equation
one expresses a change of coordinate system within the three-dimensional space
of the spacetime. Internal transformations are nonlinear extension of Galilean
transformations, but they do not allow us to derive the adequate transformations of
spacetime. Moreover, if we assume that inertial forces are present in a given frame,
they cannot be removed by means of internal transformations. This basically consti-
tutes the subtle difference between coordinate systems and frames of reference.

2.3.1.4 Lorentz Invariance

Concepts of Galilean transformation and absolute space decoupled from absolute
time are valid for most mechanics of material body. However, these concepts are
found to be inadequate when the velocity of the body approaches the light speed,
and namely for electrodynamic phenomenon where body velocity is near the light
propagation speed. This aspect should be accounted for in electrodynamics when
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dealing with Maxwell’s equations. Galilean transformation is no more adequate for
building the physics theory.

In that way, the special relativity theory is based on two postulates: (1) physics
laws are the same (have the same shape) in two reference frames in relativistic
constant motion (no rotation); (2) the speed of light c is finite and independent of the
motion of its source in any reference frame e.g. Ryder (2009). Now, to introduce the
difference between covariance and diffeomorphism invariance, let consider the wave
equation of any scalar field φ in Cartesian coordinates system (x0 := ct, x1, x2, x3),
with the time t :

∂2φ

∂(x1)2
+ ∂2φ

∂(x2)2
+ ∂2φ

∂(x3)2
− ∂2φ

∂(x0)2
= 0 (2.13)

c being the light velocity. Based on the two postulates, it is thus classically shown
that the change of coordinate system (called Lorentz transformations) according
to the relation yα = J αμ x

μ where (see appendix for the determination of this
transformation):

J ij = δij +
(γ − 1) vivj

|v|2 , J 0
i = J i0 = −γ vi, J 0

0 = γ (2.14)

where vi are three real parameters satisfying |v|2 := (v1)2+ (v2)2+ (v3)2 < 1 (any
particle has a velocity lower than the light speed which was set to c = 1), and γ :=
(1− |v|2)−1/2 is the invariance group extending the Galilean invariance of classical
Newtonian mechanics to Lorentz invariance of special relativity. The coordinate
transformation associated to (2.14) is called Poincaré-Lorentz boost (see (2.15) for
the proof), recall that Lorentz boost is simply a Lorentz transformation which does
not involve rotation,

⎧
⎨

⎩

y0 = γ (x0 − v · x)

y = x+ (γ − 1)
1

‖v‖2 v⊗ v (x)− γ v x0 (2.15)

where (y0, y) := (y0, y1, y2, y3) are the new spacetime coordinates. It should
be stressed that the Lorentz transformation mixes the time-coordinate x0 and the
spatial coordinates xi, i = 1, 2, 3 between the two reference frames. They cannot
be dissociated to extract an absolute time. The Lorentz transformation (2.14) is
the minimal invariance requirement to physics theory, including mechanics and
electromagnetism e.g. Kibble (1961) and associated to special relativity. For the
scalar function Φ(yα) = φ(xμ) = φ(Aμαxα), rewriting the wave equation (2.13) in
terms of the new coordinates gives (Fig. 2.4):

∂2Φ

∂(y1)2
+ ∂2Φ

∂(y2)2
+ ∂2Φ

∂(y3)2
− ∂2Φ

∂(y0)2
= 0 (2.16)
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Fig. 2.4 Lorentz invariance: The change of reference frame is defined by a translation of R → R′
such that the relative velocity v of the second reference R′ is constant. The Lorentz transformation
is defined as a transformation verifying that the four-dimensional length of an infinitesimal vector

remains constant: ds2 = (dx0)2 − [(dx1)2 + (dx2)2 + (dx3)2] = (dy0
)2 − [(dy1

)2 + (dy2
)2 +

(
dy3
)2] where the coordinate system in R is denoted (xμ) whereas the coordinate system in R′ is

(yμ)

The two wave equations (2.13) and (2.16) have exactly the same shape showing
that the wave equation is invariant under Lorentz transformation e.g. Westman and
Sonego (2009). Both of them may be written in a concise formulation as follows:

ĝαβ∇α∇βΦ = 0, ĝαβ := diag {+1,−1,−1,−1} , ∇α := ∂α (2.17)

and in which we have defined the differential operator ∇α . This operator will be
extended later to the notion of affine connection in order to ensure the covariance
property. However, between Cartesian coordinates and spherical coordinates, we do
not obtain the same shape for wave equations as (2.13) and (2.16). This assesses
that explicit shape of the wave equation is not invariant under general change of
coordinate system of the spacetime. This should not be confused with covariance,
as we will see hereafter. Conversely the wave equation (2.17) has exactly the same
shape for any coordinate system if the metric and the connection is chosen worthily.
It is said covariant with respect to a diffeomorphism. A further step would be the
extension of the global invariance concept, which may be associated to the change
of reference body, to a local gauge invariance that is more appropriate to gradient
continuum and to relativistic gravitation theory as performed in e.g. Utiyama (1956).

2.3.2 Elements on Spacetime and Invariance for Relativity

We remind in this subsection some mathematical basis for the relativity, namely
some tensor analysis, Minkowski spacetime, and Poincaré’s transformations.
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2.3.2.1 Forms, Tensors and (Pseudo)-Riemannian Manifolds

We notice TPB the tangent space of a manifold B at point P and TPB∗ its dual
space. Let {e1, . . . , en} be a base of TPB (contravariant vectors with the lower
index) and its dual base {f1, . . . , fn} in TPB∗ (covariant vectors with upper index)
such that 〈fi , ej 〉 ≡ δij .

Definition 2.4 (Tensor) Let {u1, . . . ,uq } ∈ TPB and {v1, . . . , vp} ∈ TPB∗ be
some arbitrary vectors. A p-contravariant and q-covariant tensor field T on B is a
multilinear form defined at each point P ∈ B by T : (v1, . . . , vp,u1, . . . ,uq) ∈
(TPB∗)p×(TPB)q −→ T(v1, . . . , vp,u1, . . . ,uq) ∈ R. The sum (p+q) is called
the rank of the tensor field. The couple (p, q) is its type.

For any two tensors T and S, respectively q and q ′ covariant on B, we define the
tensor product T ⊗ S as a linear application such that:

T ⊗ S
(
u1, . . . ,uq ,w1, . . . ,wq ′

) ≡ T
(
u1, . . . ,uq

)
S
(
w1, . . . ,wq ′

)
(2.18)

This definition may be extended to contravariant and mixed tensors e.g. Rako-
tomanana (2003).

Definition 2.5 A differential form of order q , or a q-form, is a totally antisymmetric
tensor of type (0, q).

A type (1, 0) tensor, denoted u, is called vector field and a type (0, 1) tensor, denoted
ω a co-vector field or a 1-form field on the manifold B. Let give some examples of
tensor products of vectors and 1-forms:

1. ei1 ⊗ ei2 , ei1 ⊗ ei2 ⊗ ei3 , . . . , ei1 ⊗ ei2 ⊗ ei3 ⊗ · · · ⊗ eir
2. fj1 ⊗ fj2 , fj1 ⊗ fj2 ⊗ fj3 , . . . , fj1 ⊗ fj2 ⊗ fj3 ⊗ · · · ⊗ fjr

3. ei1 ⊗ fj1 , . . . , ei1 ⊗ fj1 ⊗ fj2 ⊗ · · · eir .
where the indexes i1, i2, · · · , ir and j1, i2, · · · , jr may take any value of
1, 2, · · · , n. Number of these indexes is not limited.

Definition 2.6 Let
{
fi1, · · · , fir } a set of r one-forms on the manifold B of

dimension n, with r ≤ n. Indexes (i1, · · · , ir ) take the values (1, · · · , n). Consider
all permutations (even or odd) σ : (i1, · · · , ir)→ (σ (i1), · · · , σ (ir )) with its sign:

sign(σ ) := εσ(i1),··· ,σ (ir )i1,··· ,ir =
{+1 for even permutations
−1 for odd permutations

The wedge product is defined by the totally antisymmetric tensor product:

fi1 ∧ fi2 ∧ · · · ∧ fir :=
∑

σ

sign(σ ) fσ(i1) ⊗ fσ(i2) ⊗ · · · ⊗ fσ(ir ) (2.19)

where summation runs over all permutations σ .
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Fig. 2.5 Transformation of a
square to a parallelogram (in
a tridimensional Euclidean
space). Vectors a and b are
sides of the square whereas
1-forms α and β are normal
vectors of the square

Typical example of differential form of order 1 on an open subset of Rn is given as
follows: Consider a scalar C 1 function ϕ : (ξ1, · · · , ξn) ∈ Rn → ϕ(ξ1, · · · , ξn) ∈
R then its total differential (cf. exterior derivative in appendix) is a differential 1-
form:

dϕ = ∂iϕ dξ i

where the set
{
dξ1, · · · , , dξn} constitute a covariant independent 1-forms. Let give

some examples of wedge product of 1-forms:

1. dξi1 ∧ dξi2 = dξi1 ⊗ dξi2 − dξi2 ⊗ dξi1
2. dξi1 ∧ dξi2 ∧ dξi3 = dξi1 ⊗ dξi2 ⊗ dξi3 + dξi2 ⊗ dξi3 ⊗ dξi1 + dξi3 ⊗ dξi1 ⊗
dξi2 − dξi1 ⊗ dξi3 ⊗ dξi2 − dξi2 ⊗ dξi1 ⊗ dξi3 − dξi3 ⊗ dξi2 ⊗ dξi1

3. . . . , dξi1 ∧ dξi2 ∧ dξi3 ∧ · · · ∧ dξir , with r ≤ n
where the indexes i1, i2, · · · , ir may take any value of 1, 2, · · · , n.

Remark 2.2 In an Euclidean space, it is usual to represent a 1-form by a “vector”.
However, it may induce confusion namely when we consider large deformation
of a continuum B (manifold) undergoing an arbitrary transformation even if it
is a diffeomorphism ϕ : B → ϕ (B). Indeed, let consider the linear tangent
transformation dϕ (whose components are triadsF iμ) with the Cartesian components
∂μϕ

i (also usually called deformation gradient in the framework of continuum
mechanics). Figure 2.5 reports an Illustration of tangent and cotangent space. During
the deformation of a square to a parallelogram, the two vectors a and a become
dϕ(a) and dϕ(b) respectively, while the 1-forms α and β are transformed into

dϕ∗(α) and dϕ∗(β) where the components of ϕ∗ are Det(F jν )
(
F iμ
)−1

. For a tri-
dimensional Euclidean manifold endowed with metric tensor gμν and a velum-form
ω0 (determinant), 1-forms α and β may be represented by vectors (homeomorphism
between vector and normal vectors of surface). Deformation of vectors and those of
1-forms are different.

Definition 2.7 (Components of Tensor) If T is a tensor field of type (p, q) then

the scalars T
j1...jq
l1...lp

are the components of T projected onto the base formed by

{ej1, . . . , ejq } and {fl1, . . . , flp }, defined by T
l1...lp
j1...jq

:= T
(
fl1, . . . , flp , ej1 , . . . , ejq

)
.
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Any (p, q) tensor T may thus be decomposed along the tensor base according to
the tensor product (2.18):

T := T
j1...jq
l1...lp

fl1 ⊗ · · · ⊗ flp ⊗ ej1 ⊗ . . .⊗ ejq

In the present book, a tensor will be assimilated to its components, as soon as the
vector bases are defined. If Th1...hr

k1...ks
constitute the components of a type (r, s) tensor

then, under the transformation (2.11)

T
j1...jr
l1...ls

= Aj1α1
. . . Ajrαr J

β1
l1
. . . J

βs
ls

T
α1...αr
β1...βs

(2.20)

and the corresponding inverse formulation

T
α1...αr
β1...βs

= J α1
j1
. . . J

αr
jr
A
l1
β1
. . . A

ls
βs

T
j1...jr
l1...ls

(2.21)

Properties 2.3.1 According to the previous results:

1. A scalar ψ is a type (0, 0) tensor which has the same form in any coordinate
system: ψ in (yi), ψ in (xα) and ψ = ψ .

2. If all tensor components vanish in a coordinate system then they vanish in any
other coordinate system.

Definition 2.8 (Metric) Let B be a differentiable manifold. A metric g is a type
(0, 2) tensor on B which satisfies the following axioms at each point P ∈ B:

1. g (u, v) = g (v,u),
2. g (u,u) ≥ 0 where the equality holds only when u = 0.

Projected onto a base {e1, . . . , en} of TPB, components of g are gij , components
of its inverse g−1 are gij with gikgkj = δij . Since gij = gji the eigenvalues of
the matrix are real and strictly positive (or negative depending on the convention)
and their eigenvectors orthogonal. We say that g is a pseudo-Riemannian metric if
it satisfies the first axiom and the second one is replaced by: g (u, v) = 0 for any
u ∈ TPB, then v = 0. For pseudo-Riemannian metric, some of the eigenvalues are
negative. Say j the number of negative (or positive depending on the convention)
eigenvalues.

Definition 2.9 (Riemannian Manifold) A differential manifold B endowed with
a (pseudo-) metric (B, g) is a (pseudo-) Riemannian manifold.

For j = 1, the pseudo-Riemannian manifold (B, g) is called Lorentzian. On such a
manifold, the tangent four-vectors u ∈ TPB can be divided into three classes (with
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the convention j = 1 is the number of positive eigenvalues):

1. gαβuαuβ < 0, vector u is spacelike
2. gαβuαuβ = 0, vector u is lightlike
3. gαβuαuβ > 0, vector u is timelike.

Definition 2.10 (Galilean Structure) Let M be a four-dimensional differentiable
manifold, endowed with a (0, 2) tensor field g and a nonsingular 1-form τ .
The triplet (M , g, τ ) constitutes a Galilean structure provided the two following
conditions are satisfied:

1. Tensor g, called space metric, is symmetric and degenerate of rank 3 (three non
zero eigenvalues).

2. There exists a vector field u �= 0 on M such that g(u, v) ≡ 0 for any vector field
v ∈ TxM , and τ (u) = 1.

This definition introduces the lightlike vector field u ∈ TxM , which is an element
of the Galilean structure. The 2-covariant symmetric tensor τ⊗τ , degenerate of rank
1 (one non zero eigenvalue) is called time metric. The spacetime metric is therefore
defined as ĝ := τ ⊗τ −g (hereafter, the hat on the spacetime metric will be dropped
if there is no ambiguity). In mechanics, it is worth to introduce a local coordinate
system (x0 := ct, x1, x2, x3) in the neighborhood of any event (spacetime point) in
such a way that τ := cdt and for any index i, τ (∂i) = 0, meaning that the space
coordinates xi are independent variables with respect to time t e.g. Dixon (1975). c
denotes the light speed.

2.3.2.2 Hilbert’s Causality Principle

The causality principle constitutes the most fundamental principle that should be
satisfied by any physics model. In the framework of general relativity, this means
that each event (point) xμ of the spacetime M should admit an intrinsic valid notion
of the past, present, and future. These states should not depend on the mathematical
description (invariant notion). When considering dynamical evolution of metric
on a manifold or change of spacetime coordinates, Hilbert’s conditions must be
satisfied to respect the causality e.g. Brading and Ryckman (2008). Arbitrariness
of coordinates change (or dynamics of metric evolution) should be limited if we
want to stand on the point of view that two points of the same timeline are in a
cause-effect relationship. The following four inequalities must be satisfied besides
the condition det

[
gαβ
]
< 0 e.g. Brading and Ryckman (2008), Havas (1964):

g00 > 0, g11 < 0, det

[
g11 g12

g21 g22

]
> 0, det

⎡

⎣
g11 g12 g13

g21 g22 g23

g31 g32 g33

⎤

⎦ < 0 (2.22)
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Fig. 2.6 Minkowski spacetime. Diagram showing the light cone for a worldline in Minkowski
spacetime. The observer is at the junction between two light cones, the past and the future. The
space is represented hypersurface of simultaneity

Minkowski spacetime is as a four-dimensional spacetime used to describe the
consequences of special relativity theory on the finiteness of light speed and for
the time-like worldline gαβ uαuβ := c2dt − gij dxidxj > 0 and for the light-like
wordline gαβ uαuβ := c2dt − gij dxidxj = 0 (Fig. 2.6). These conditions ensure
that change of spacetime coordinates will respect to the flow of time x0 := ct (they
allow us to define a so-called “proper time coordinate”). Recently, the application
of Hilbert’s causality conditions provides some restriction on the formation of
black hole cosmology after analysis of the famous Schwarzschild solutions of
Einstein’s equations of relativistic gravitation e.g. Logunov and Mestivirishvili
(2012). Application of causality condition in strain gradient continuum mechanics
may be found in e.g. Metrikine (2006), which is based on a conjecture extending
Einstein’s causality on the second-order differential equations. Broadly speaking,
Hilbert’s causality conditions involve two problems in relativistic gravitation and
electromagnetism: the causal ordering and the univocal determination of metric
components. They are strongly tight with the invariance of Lagrangian function and
its arguments e.g. Brading and Ryckman (2008), and even beyond the covariance,
related with the search of invariance group of spacetimes e.g. Zeeman (1964),
Williams (1973).

Definition 2.11 (Isometry) Let (B, g) be a (pseudo-) Riemannian manifold. A
diffeomorphism f : B → B is an isometry if it preserves the metric:

Aiα A
j
β gij

(
yk
)
= gαβ(xμ) (2.23)

where yk and xμ are the coordinates of f(M) ∈ f(B), andM ∈ B respectively.
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The orthogonality group O(n), n = 3, 4 is the group of n × n real matrices
whose transpose is equal to their inverse. In an Euclidean n-dimensional manifold,
the linear transformation of (tangent) vectors as êj = Rjheh, provided that the
coefficients Rjh satisfy the orthogonality condition Rjh Rkh ≡ δjk , implies that
detR = ±1. These passive diffeomorphisms are orthogonal transformations, and
for the subgroup detR = 1 rotations (proper orthogonal). Isometries form a group
which includes the identity map. Since an isometry preserves the length of a
(tangent) vector, it characterizes a rigid motion in continuum mechanics. In the
framework of relativistic gravitation, the background is the Minkowskian spacetime,
a four-dimensional real vector space R(1,3) endowed with an inner product, which
is a nondegenerate bilinear form with signature (1, 3), where x0 is the time. But
the associated metric is not positive-definite. Adopting the notation that O(n) :=
O(0, n), the orthogonal group of the Minkowskian spacetime is denoted O(1, 3).
This group O(1, 3) is called Lorentzian group of transformations.

Definition 2.12 (Lorentz Group) The Lorentz group O(1, 3) is the group of linear
transformations that preserve the Minkowski spacetime inner product (Eq. (2.1))
on R4.

Let now remind briefly the necessary and sufficient condition for a 4 × 4 matrix—
representing a linear transformation—A = (Aαβ) to leave the inner product
(Eq. (2.1)) of any two four-vectors u and v invariant. Suppose the transformed
vectors:

u′μ = Aμαuα, u′ν = Aνβuβ, u′ · v′ = gμν Aμαuα Aνβuβ ≡ gαβuαuβ

In order for the condition u′ · v′ ≡ u · v to hold for two arbitrary vectors u and
v, we deduce the necessary and sufficient condition (then a definition) of Lorentz
transformations, which resembles to the condition (2.23):

gμν A
μ
α A

ν
β ≡ gαβ (2.24)

These transformations constitute a group (closure, associativity, identity and inverse
conditions). This group defined as such is any larger as the group defined hereafter
(boosts and rotations). The subgroup which preserves the time orientation is denoted
O+(1, 3). The subgroup which preserves both the time and the space orientation is
the group of proper Lorentz transformations SO+(1, 3).

2.3.2.3 Euclidean Spacetime and Isometries

An Euclidean spacetime is a quadruplet, called affine fiber bundle, (M , g, T , τ ),
where M is a four dimensional differentiable manifold endowed with a metric g,
whose elements (xα, α = 0, 1, 2, 3) ∈M are called events. T is a one dimensional
ordered Euclidean space and having underlying vector space on the real set R.
Projection map τ :M → T characterizes the absolute time τ (xα) = ct of the event
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Fig. 2.7 Euclidean
spacetime. The 3D affine
Euclidean (sub)-spaces
Mt := {xα ∈
M , such that τ(xα) = ct},
t ∈ T are called
instantaneous spaces. The
structure group of the bundle
is the group of isometries of a
three dimensional Euclidean
space. Time T remains the
same for all points of the
spacetime (absolute time)

xα ∈ M e.g. Kadianakis (1996). At this step, there is no need of a supplementary
structure such as affine structure. According to classical Newton mechanics, there is
a absolute time τ and a absolute three-dimensional space. Hence the manifold M ,
set of the events, may be merely considered as the Cartesian product of the sets of
instants T and the set of all space points S →Mt , say M := T ×Mt e.g. Ehlers
(1973). Any instantaneous subspace Mt is then implicitly assumed Euclidean 3-
spaces (Fig. 2.7).

2.3.2.4 Minkowski Spacetime and Lorentz Transformations

Let (M , g) be a (pseudo)—Riemannian manifold, and consider the kinematics-
based Lorentz transformation, where the velocity v is along the axis x1 for
simplifying. The metric is defined by gαβ := diag(1,−1,−1,−1), to give the
Minkowski line element ds2 = gαβ dxαdxβ = (dx0)2− (dx1)2− (dx2)2− (dx3)2.
The group of proper Lorentz transformations O(1, 3) are generated by six types
of transformations that are three simple spatial rotations, and three time-space
operators called boosts. Consider the usual form of Lorentz transformations (one
of the generator boost) (x0 := ct):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y0 = 1√
1− v2

(
x0 − vx1

)

y1 = 1√
1− v2

(
−vx0 + x1

)

y2 = x2

y3 = x3

�⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 = 1√
1− v2

(
y0 + vy1

)

x1 = 1√
1− v2

(
vy0 + y1

)

x2 = y2

x3 = y3

By plugging the second system of equations into the Minkowski line element, we
obtain ds2 = (dy0)2 − (dy1)2 − (dy2)2 − (dy3)2 = gαβ dyαdyβ , stating that the
Minkowski line element is invariant with respect to Lorentz transformations (2.14),
assessing that they are isometries. Defining γ := (1 − v2)−1/2, and θ :=
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ln
[
(1+ v2)/

√
1− v2

]
, the three boosts generator Bi, i = 1, 2, 3 are given by:

⎡

⎢
⎢
⎣

cosh θ sinh θ 0 0
sinh θ cosh θ 0 0

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

cosh θ sinh θ 0 0
0 1 0 0

sinh θ 0 cosh θ 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

cosh θ 0 0 sinh θ
0 1 0 0
0 0 1 0

sinh θ 0 0 cosh θ

⎤

⎥
⎥
⎦

Boosts specify the change from one observer’s reference frame to another one. More
classically, three space rotations generator Ri, i = 1, 2, 3 are given by (θ is the
rotation angle):

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1 1 0 0
0 cos θ 0 sin θ
0 0 1 0
0 − sin θ 0 cos θ

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

1 0 0 1
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎤

⎥
⎥
⎦

By introducing the dimension of the light velocity, the term v is replaced by v/c,
and we recover the Galilean group of transformations when v/c → 0 e.g. Ehlers
(1973). Field equations of Newtonian mechanics are invariant under any member
of the Galilean group, whereas those of the special relativity are invariant under the
Lorentz group v/c �= 0. Physical quantities in special relativity theory are always
referred to a fixed Minkowski spacetime. The Lorentz transformations built with
change of reference, (boosts and rotations) together with time reversal and space
inversion equals to the entire Lorentz group.

Remark 2.3 Components of the metric tensor
{
gij
}

constitute a symmetric matrix,
the eigenvalues are real. For Riemannian manifold, all the eigenvalues are strictly
positive. For a pseudo-Riemannian manifold, some of them may be strictly negative.
The index of the metric is the pair (i, j) where i is the number of positive
eigenvalues and j the number of negative eigenvalues. For j = 1, the metric is
called Lorentzian.

Causality of spacetime events and invariance with respect to Lorentz group are
strongly tight. Consider a Minkowskian spacetime M endowed with the metric
gαβ . In 1964, Zeeman’s theorem states that the most general point (event)
transformation of M to itself that preserves the Hilbert’s causality relation
within the spacetime is an 11-parameters group, called G generated by the
orthochronous Lorentz transformations, the spacetime translation, and dilations
(Zeeman 1964). In other words, the Lorentz group naturally appears as the
symmetry group of the spacetime M if a single principle of causality is admitted a
priori.
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2.3.2.5 Global Poincaré Transformations

Indeed, common continuous symmetries of special relativistic theory is Lorentz
invariance, meaning that the dynamics is the same in any Lorentz frame. The
group of Lorentz transformations (2.14) (which is not compact) can be decomposed
into two parts: (a) Boosts, where we go from one Lorentz frame to another,
i.e., we change the velocity v; (b) Rotations, where we change the orientation
of the coordinate frame. Lorentz transformations are not the only elements of
the symmetry group of the Minkowskian spacetime. In the framework of special
relativity with the metric ĝαβ = diag{+1,−1,−1,−1}, the Poincaré-Minkowski
symmetry group of the spacetime is obtained by adding translation in space and
time uν, ν = 0, 1, 2, 3:

yμ = Aμν xν + uν, ĝαβ A
α
μ A

β
ν = ĝμν (2.25)

constitutes the symmetry group of the physics laws.2 In the language of group
theory, we have the definition.

Definition 2.13 The Poincaré’s group is SO+(1, 3) � R
1,3, the semi-direct product

of the group of translations of the Minkowski spacetime R1,3 and the proper Lorentz
transformations SO+(1, 3).

Zeeman (1964) showed that the causality group of a Minkowskian spacetime M
was the group generated by the orthochronous Lorentz group, the translation of M
and dilations of M . Later, Williams (1973) extended this result to show that the
group of automorphisms G of M that preserved the norms of timelike vectors, was
in fact the complete Poincaré group. In that way, it is needless to use the principle
of relativity since the invariance of the light velocity c leads to the invariance with
respect to Poincaré group e.g. Williams (1973). Poincaré group is a larger group
of symmetries than Lorentz group, obtained when we add translations to the set of
symmetries (space and time translation). This is the main idea behind the Einstein’s
theory of special relativity. The set of conserved quantities associated with Poincaré
group is larger. Translational and boost invariance implies conservation of four
momentum, and rotational invariance implies conservation of angular momentum.
The choice of a metric tensor components gαβ may be explained as follows. At any
point P ∈ B, the tangent space TPB is spanned by {e1, · · · , en}, and the dual space
TPB∗ by {f1, · · · , fn}. There is an alternative choice by taking a particular base
defined as êa := F−1 (ea), where detF > 0, and in such a way that g

(
êa, êb

) := ĝab.
The quantityF is called gradient of transformation in classical continuum mechanics

2Given the two groups R1,3 and SO+(1, 3) such R1,3 ∩ SO+(1, 3) = {I}, the semi-direct product
of R1,3 and SO+(1, 3) is a group denoted and with its element:

SO+(1, 3) � R
1,3 :=

{
g = l k ∈ SO+(1, 3) � R

1,3,where k ∈ SO+(1, 3), l ∈ R
1,3
}
.
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e.g. Marsden and Hughes (1983), and called tetrads in relativistic gravitation theory
e.g. Nakahara (1996). F is not necessarily a gradient of a mapping (triad/tetrad
approach). In 3D continuum mechanics, it is usual to define the Green-Lagrange
strain εαβ := (1/2)(gαβ − ĝαβ). However, introducing this tensor as a primal strain
variable necessarily induces a coupling between continuum matter and the ambient
spacetime. Its extension in relativistic gravitation needs further development as we
will see later. Arguments of any scalar field L may be chosen as the components
of the metric gαβ onto a “deformed base” {eγ }. The definition of strain ε does not
require the introduction a priori of displacement field and its gradient. It expresses
the difference of shape between two configurations of a continuum. While the
physical variables (modeled by tensors) may be calculated in arbitrary coordinate
system, the displacement field components are naturally referred to the initial
Cartesian frame. It is therefore physically significant to distinguish the Cartesian
reference frame and arbitrary coordinate system.

2.3.3 Volume-Form

Governing equations of continuum physics mainly lie on the conservation laws
of some physical quantities such as mass, energy and information to name but a
few. The main uses of differential forms concern the integration of these physical
extensive quantities on either within manifolds B or at their boundary ∂B. For
that purpose, a coordinate-free theory of integration is therefore necessary on
manifolds.

A manifold B of dimension n is orientable if there exists a n-form, denoted ωn
which vanishes nowhere e.g. Lovelock and Rund (1975).

Definition 2.14 (Volume-Form) A volume-form on a manifold B of dimension n,
is a nowhere vanishing n-form ωn on B.

For example, consider a surface by (ξ1, ξ2) immersed in a tridimensional space
R3 defined by the mapping:ϕ : (ξ1, ξ2) ∈ R3 → ϕ(ξ1, ξ2) ∈ R3. The tangent plane
at point ϕ(ξ1, ξ2) is the plane through the point ϕ spanned by the two (independent)
vectors:

u1 := ∂1ϕ

‖∂1ϕ‖ and u3 := ∂1ϕ × ∂2ϕ

‖∂1ϕ × ∂2ϕ‖ , and u2 := u3 × u1

The surface being immersed within a tridimensional space, the vector basis
{u1,u2,u3} is called adapted moving orthonormal frame. Consider the differential
form dϕ := ∂1ϕdξ

1 + ∂2ϕdξ
2 which obviously belongs to the tangent plane, and

therefore may be decomposed onto the adapted moving reference frame as:

dϕ := ∂1ϕ dξ
1 + ∂2ϕ dξ

2 = θ1u1 + θ2u2
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where we define two 1-forms:

θ1 := ∂1ϕ · u1 dξ
1 + ∂2ϕ · u1 dξ

2

θ2 := ∂1ϕ · u2 dξ
1 + ∂2ϕ · u2 dξ

2

We deduce that:

dϕ ∧ dϕ =
(
∂1ϕ · u1 dξ

1
)
∧
(
∂2ϕ · u2 dξ

2
)
+
(
∂2ϕ · u1 dξ

2
)
∧
(
∂1ϕ · u2 dξ

1
)

(2.26)

= [(∂1ϕ · u1) (∂2ϕ · u2)− (∂2ϕ · u1) (∂1ϕ · u2)] dξ
1 ∧ dξ2

= Det

(
∂1ϕ · u1 ∂1ϕ · u2

∂2ϕ · u1 ∂2ϕ · u2

)
dξ1 ∧ dξ2 (2.27)

which is called area 2-form of the surface.
More generally, a volume-form on a n-dimensional manifold M is a

nowhere vanishing n-form on M . A particular n-form is f1 ∧ f2 · · · ∧ fn.
If {e1, e2, . . . , en} is the vector base dual to {f1, f2, . . . , fn} then we have:(
f1 ∧ f2 · · · ∧ fn

)
(e1, e2, . . . , en) = 1. For spacetime or continuum with a metric

structure, various volume-form may be designed as ω := f (x) ωn provided any
strictly positive function f : x ∈ M → f (x) ∈ R∗+. We can construct a volume-
form by using an linearly independent n-forms f1 ∧ f2 · · · ∧ fn �= 0, and define
ωn := f f1 ∧ f2 · · · ∧ fn, where f (x) ∈ R is a positive non-vanishing C∞ scalar
function. For (pseudo-) Riemannian manifold (B, g), there exists a natural volume-
form which is invariant under coordinate transformation, say in a coordinate system
(x1, . . . , xn), ωn := √Detg dx1∧dx2..∧dxn where n = 3, or n = 4 e.g. Nakahara
(1996).

Remark 2.4 The volume form ωn := √Detg dx1 ∧ dx2.. ∧ dxn is invariant under
the passive diffeomorphism (2.11). In terms of the y-coordinates, the volume-form
holds as (the metric is written more explicitly) the extension of the area form (2.26):

ωn =
√

|Det
(
J αi J

β
j gαβ

)
| dy1 ∧ dy2.. ∧ dyn (2.28)

Owing that dyi := Aiαdx
α, we obtain the volume-form in terms of y-coordinates

ωn := ±√Detg dy1 ∧ dy2.. ∧ dyn where
√|Detg| is the determinant with the

coordinates yi . The sign±may be dropped if we consider a passive diffeomorphism
with strictly positive Jacobian everywhere.

Remark 2.5 Two volume-forms ωn and ω′n on the manifold B are said to be
equivalent if ωn = f ω′n for some scalar function on B, say f ∈ C∞ with
f > 0 at every point M ∈ B. For example dx ∧ dy ∧ dz is not equivalent to
dy ∧ dx ∧ dz, and dx ∧ dy ∧ dz (Cartesian coordinate system) is not equivalent to
dr∧dϕ∧dθ where (r, θ, ϕ) is the standard spherical coordinate system. Conversely
dx ∧ dy ∧ dz is equivalent to dr ∧ dθ ∧ dϕ for r �= 0, and θ ∈]0, π[ since
dx ∧ dy ∧ dz = r2 sin θdr ∧ dθ ∧ dϕ.
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Definition 2.15 On an oriented metric manifold B, the Lagrangian (n-form) is
defined by Lagrangian density L multiplied by the volume form ωn, and thus
defines the action:

S :=
∫

B
Lωn =

∫

B
L
√

Detg dx1 ∧ dx2.. ∧ dxn (2.29)

This allows us to integrate the Lagrangian density L over the oriented manifold
B. By the way, the scalar field L behaves like a tensor density e.g. Lovelock and
Rund (1975) and not as a scalar (tensor), but if we include the term

√
Detg in the

Lagrangian density, we can define a scalar (tensor) field L
√

Detg→ L where the
factor

√
Detg is worthily included once for all in order to have the proper weight.

The presence of this factor is essential to recover the Einstein’s field equations in
vacuo. The Lagrangian density can not explicitly depend on the coordinates (xμ)
by virtue of the Lorentz translational invariance as shown by Kibble in e.g. Kibble
(1961).

2.3.4 Affine Connection

A connection is a structure which specifies how tensors are transported along
a curve on a manifold. Space connection provides the geometric structure to
derive laws of motion which constitutes the originality of Newton’s approach.
Newton’s laws are fundamentally based on the connecting of instantaneous spaces
to calculate the acceleration e.g. Appleby (1977), Kadianakis (1996). By analogy,
for deriving equations of continuum mechanics it is necessary to introduce the
matter connection (Fig. 2.8). Space and matter connections are different for either
classical mechanics e.g. Rakotomanana (2003), or in relativistic gravity theory
e.g. Tamanini (2012), except for classical elasticity e.g. Marsden and Hughes
(1983).

2.3.4.1 Affine Connection, Affinely Connected Manifold

To start with, a local tangent base is associated to a coordinate system: the
contravariant base {eα} is associated to the system {yα}.
Definition 2.16 (Affine Connection) An affine connection ∇ on a manifold B is
a map defined by

∇ : (u, v) ∈ TPB × TPB −→ ∇uv ∈ TPB (2.30)
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Fig. 2.8 Two connected material points xμ and xμ + dxμ along a material line. At this length
scale � = 30 μm, the metric alone is not sufficient for modeling the shape change due to relativistic
motions of grains. Grain interfaces are source of dislocations during plastic flow of polycrystalline
solids. Dislocations may multiply within grains by a multiple cross-slip process. The same
dissection of spacetime holds in relativistic gravitation to obtain local inertial microcosms—
attached to local flat inertial frames of reference. From these microcosms, in which the special
relativity theory holds, the global structure of gravitational field is reconstructed after introducing
curvature field to obtain continuous bound of the whole. For Einstein–Cartan spacetime, torsion
field should be also introduced

which satisfies the following conditions (λ and μ are scalars, φ is scalar field)

1. ∇λu1+μu2v = λ∇u1v+ μ∇u2v
2. ∇u (λv1 + μv2) = λ∇uv1 + μ∇uv2
3. ∇φuv = φ∇uv
4. ∇u (φv) = φ∇uv+ u(φ)v

The connection coefficients Γ cab are implicitly defined by ∇eaeb := Γ cabec. ∇u
represents a covariant derivative along the direction u ∈ TPB. It generalizes the
derivative of tensor fields on manifold. The covariant derivative of a type (p, q)
tensor is a type (p, q + 1) tensor. For example, the covariant derivative of a scalar
field φ and a vector field w along the vector ek (a vector of the tangent space
TPB) may be expressed in terms of their components on the base {ea} associated to
coordinate system (ya) : ∇ek φ = ∂kφ, and ∇ekw =

(
∂kw

a + Γ akcwc
)
ea . Of course,

by definition, the covariant derivative of a scalar field is a 1-form ∇φ := ∂kφ ek =
∇kφ . The covariant derivative of a vector field is a (1, 1) type tensor:

∇w = ∇ek
(
waea

)⊗ ek = [(∇ekw
a
)
ea + wc∇ekec

]⊗ ek

= (∂kwa + Γ ckcwc
)
ea ⊗ ek := ∇kwa ea ⊗ ek

For tensor components, we adopt whenever needed the notations ∂k(..) = (..),k and
∇ek (..) = (..)|k. This allows us to define the components of the covariant derivative
of a vector field w, and that of a 1-form field ω on a manifold B, as: ∇kwa :=
∂kw

a + Γ akc wc, and ∇kωa := ∂kwa − Γ cka ωc by using the reciprocity relation
ωa(wb) := δba for the two dual fields.
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Definition 2.17 (Affinely Connected Manifold) A differential manifold B
endowed with an affine connection ∇ is an affinely connected manifold.

Definition 2.18 (Metric Compatible Connection) On a manifold B endowed
with connection ∇, and a metric g, connection ∇ is metric compatible connection if
and only if ∇g ≡ 0.

For either classical or relativistic mechanics, there is a correspondence between the
set of reference frames of spacetime and the set of compatible affine connections e.g.
Kadianakis (1996). The existence of infinite number of reference frames is related
to the possible existence of infinite number of affine connections on the spacetime
manifold. For the Galilean structure (see definition below), the metric compatibility
of the connection takes the form of e.g. Bain (2004), Dixon (1975), Ruedde and
Straumann (1997):

∇γ hαβ ≡ 0, ∇βτα ≡ 0 (2.31)

where h and τ are metric and 1-form on the manifold B, that will be defined later.
However, the connection coefficients Γ γαβ of∇ are not uniquely determined by these
metric compatibility (Eq. (2.31)). This allows us to define:

Definition 2.19 (Galilean Connection) Consider a Galilean structure (M ,h, τ )
where h and τ are metric and 1-form on the manifold M . An affine connection
∇ is a Galilean connection if and only if its is compatible with the metric say:
∇γ hαβ ≡ 0, and ∇βτα ≡ 0.

From the compatibility of the 1-form τ , we deduce that the exterior derivative
vanishes dτ ≡ 0, meaning an integrability of the distribution associated to τ . First,
the maximal integral manifolds are the spatial sections of constant time. Second,
there is no unique symmetric connection on a Galilean structure (manifold). Any
connection with coefficients Γ γαβ + 2

(
ταωβλ − τβωαλ

)
hλγ , where Γ γαβ is Galilean

and ωαβ are components of arbitrary closed 2-form (dω ≡ 0), is also Galilean e.g.
Ruedde and Straumann (1997).

Definition 2.20 (Metric-Affine Manifold) A manifold B endowed with a metric
g and an affine (symmetric) connection ∇ is called metric-affine (connected)
manifold.

Metric and connection need not depend on each other (Hehl and Kerlick 1976).
However, the metric alone determines a particular connection ∇. Connection plays
also central role in continuum mechanics since it represents the evolution of
material manifold topology during non holonomic deformation in a 3D body e.g.
Rakotomanana (2003). It supports dynamical concepts in the four-dimensional
spacetime manifold, such as the concept of frame of reference e.g. Defrise (1953).
To conform with either classic or relativistic gravity theory, it is postulated from
now and hereafter that the metric components gαβ and the coefficients of the affine
connection Γ γαβ should be single-valued and smooth enough to be of class C 2.
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2.3.4.2 Example: Spherical Coordinate System

As first illustration of connection, consider the Euclidean space defined by the
origin O the orthogonal axes Ox1x2x3. It is obvious that the connection coef-
ficients of the Euclidean space are zero for the Cartesian coordinate system.
Let us calculate the connection coefficients of the Euclidean three-dimensional
space with the spherical coordinate system (r, θ, ϕ) (Fig. 2.9). The local base
for the spherical coordinate system is defined from the vector position OM =
rer :

⎧
⎨

⎩

fr := ∂rOM = sin θ cosϕ e1 + sin θ sinϕ e2 + cos θ e3

fθ := ∂θOM = r cos θ cosϕ e1 + r cos θ sin ϕ e2 − r sin θ e3

fϕ := ∂ϕOM = −r sin θ sinϕ e1 + r sin θ cosϕ e2

where we observe that vectors of the local base are orthogonal each other but they
have different norm. From the definition of the reciprocal (dual) basis fi

(
fj
) ≡ δij ,

we easily obtain:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fr = sin θ cosϕ e1 + sin θ sinϕ e2 + cos θ e3

fθ = 1

r
(cos θ cosϕ e1 + cos θ sin ϕ e2 − sin θ e3)

fϕ = 1

r sin θ
(cosϕ e1 − sin ϕ e2)

Fig. 2.9 System of spherical coordinates (r, θ, ϕ): Coordinates are basically defined from the
vector position of the point M as OM = r (sin θ cos ϕ e1 + sin θ sinϕ e2 + cos θ e3). The mesh
of coordinate curves are formed by the intersection of the surfaces:

∑3
i=1(x

i )2 = r2 (spheres),
(x1)2 + (x2)2 = tan2 θ x3 (cones), and x2 = x1 tanϕ (planes)
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We deduce the Christoffel’s symbols by writing fk
(
∂i fj
) := Γ kij :

⎧
⎪⎨

⎪⎩

Γ
r

θθ = −r
Γ
r

ϕϕ = −r sin2 θ

Γ
θ

ϕϕ = − sin θ cos θ

⎧
⎪⎨

⎪⎩

Γ
θ

rθ = Γ θθr = 1/r
Γ
ϕ

rϕ = Γ ϕϕr = 1/r
Γ
ϕ

θϕ = Γ ϕϕθ = cos θ/ sin θ

(2.32)

The other coefficients of the connection are equal to zero. The only non vanishing
metric components projected onto the local base, endowed from the scalar product
of the space as:

grr := ‖fr‖2 = 1, gθθ := ‖fθ‖2 = r2, gϕϕ := ‖fϕ‖2 = r2 sin2 θ

which allow us to calculate the line element ds2 := dr2 + r2dθ2 + r2 sin2 θdϕ2.

2.3.4.3 Example: Elliptic-Hyperbolic Coordinate System

Connection is a concept beyond the elementary introduction based on the consid-
eration of a curvilinear coordinate system. For the sake of clarity, let us consider a
particular example of elliptic-hyperbolic coordinate system in a plane. It is defined
by the mapping:

{
x1 = cosh y1 cos y2

x2 = sinh y1 sin y2

where (x1, x2) are the classical Cartesian coordinates in the plane whereas (y1, y2)

such that y1 > 0 and 0 < y2 < 2π are called elliptic-hyperbolic coordinates in the
plane. It is easily checked that the couple (y1, y2) constitutes an admissible system
of coordinates (except at the origin O). The local base associated to (x1, x2) and
associated (y1, y2) are denoted respectively (e1, e2) and (f1, f2) such that:

{
f1 = sinh y1 cos y2 e1 + cosh y1 sin y2 e2

f2 = − cosh y1 sin y2 e1 + sinh y1 cos y2 e2

The connection coefficients are defined as Γ kij := fk
(
∂ifj
)

in which fk is the

dual vector defined as fk
(
fj
) ≡ δkj . For illustrating the calculus, consider the

example Γ 1
11:

Γ 1
11 =

⎛

⎜⎜
⎝

cosh y1 sin y2

cosh2 y1 − cos2 y2

sinh y1 cos y2

cosh2 y1 − cos2 y2

⎞

⎟⎟
⎠ · ∂1

(
sinh y1 cos y2

cosh y1 sin y2

)
= cosh y1 sinh y1

cosh2 y1 − cos2 y2
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where the dual vector is uniquely calculated as f1 (f1) = 1, and f1 (f2) = 0. The non
vanishing other components are obtained accordingly:

Γ 1
11 = Γ 2

12 = Γ 2
21 = −Γ 1

22 =
cosh y1 sinh y1

cosh2 y1 − cos2 y2

Γ 2
11 = −Γ 1

12 = −Γ 1
21 = −Γ 2

22 = −
cos y2 sin y2

cosh2 y1 − cos2 y2

Remark 2.6 Connections associated to curvilinear coordinates does not constitute
the general case but they illustrate the fact that connection is not a tensor. These
examples show that the connection coefficients associated to Cartesian system are
identically equal to zero although coefficients associated to elliptic-hyperbolic do
not vanish.

2.3.4.4 Practical Formula for Covariant Derivative

There are numerous index convention for the component formulation of the covari-
ant derivative. We remind the covariant derivative of general tensor T = (T α1···αp

β1···βq ):

∇γ T α1···αp
β1···βq = ∂γ T

α1···αp
β1···βq +

s=p∑

s=1

Γ
αs
γμT

α1···αs−1 μ αs+1···αp
β1···βq −

s=q∑

s=1

Γ
μ
γβs
T
α1···αp
β1···βs−1 μ βs+1···βq

(2.33)

where the index γ is the first covariant index of connection coefficients for the
second Γ

αs
γμ and third Γ

μ
γβs

terms. Some authors use the transpose covariant
derivative and thus put the γ index at the second place e.g. Lovelock and Rund
(1975). As usual examples, the covariant derivative of tensor T α1α2 , Tβ1β2 , T α1

β1β2
,

and T α1
β1β2β3

are respectively:

∇γ T α1α2 = ∂γ T α1α2 + Γ α1
γμT

μα2 + Γ α2
γμT

α1μ

∇γ Tβ1β2 = ∂γ Tβ1β2 − Γ μγβ1
Tμβ2 − Γ μγβ2

Tβ1μ

∇γ T α1
β1β2

= ∂γ T α1
β1β2

+ Γ α1
γμT

μ
β1β2

− Γ μγβ1
T
α1
μβ2
− Γ μγβ2

T
α1
β1μ

∇γ T α1
β1β2β3

= ∂γ T α1
β1β2β3

+ Γ α1
γμT

μ
β1β2β3

− Γ μγβ1
T
α1
μβ2β3

− Γ μγβ2
T
α1
β1μβ3

− Γ μγβ3
T
α1
β1β2μ

2.3.4.5 Torsion and Curvature

Say a manifold B endowed with an affine connection ∇. Covariant derivative of
a vector field with components (wa) (considered as (1, 0) tensor) is a (1, 1) tensor
field with components∇kwa . The second covariant derivative leads to a (1, 2) tensor
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with components ∇l∇kwa which may be different of ∇k∇lwa even if wa(x) is
twice differentiable with respect to components xb. Torsion and curvature fields
are introduced for that purpose.

Definition 2.21 Let (B,∇) be an affinely connected manifold. The Lie-Jacobi
brackets and Cartan coefficients of structure are defined by: [u, v](ψ) := uv(ψ) −
vu(ψ), and then [eα, eβ ] := ℵγ0αβ eγ , where ψ is a scalar field on B, and u and v
vector fields.

Considering two vector bases on the tangent space TMB, there are two possibilities:
(a) Case where (e1, · · · , en) is a base associated to a global coordinate system
(x1, · · · , xn) then ℵγ0αβ ≡ 0; (b) Case where (e1, · · · , en) is a base which cannot

be associated to a global coordinate system then ℵγ0αβ �= 0. The basis {eα} is said
anholonomic when the coefficients of structure do not vanish, the frame {∂α} are
holonomic because its members commute each other.

Definition 2.22 (Torsion) The torsion tensor ℵ is a type (1, 2) tensor

{
ℵ(fk, ei , ej ) = fk

(∇ei ej −∇ej ei −
[
ei , ej

])

ℵkij = Γ kij − Γ kji − ℵk0ij
(2.34)

where ei and fi are vector and 1-form on B (Fig. 2.10).

To highlight the role of torsion on a manifold, consider a scalar field φ (xμ)
twice differentiable on B (C 2). Consider the difference between second covariant
derivatives, assuming that we use a coordinate vector base,

∇α∇βφ −∇β∇αφ = (∂α∂βφ − ∂β∂αφ)− (Γ γαβ − Γ γβα)∂γ φ
= −ℵγαβ ∂γ φ = −ℵγαβ∇γ φ (2.35)

showing that on a manifold with torsion, the commutativity of second covariant
derivatives is not ensured even for a smooth C 2 scalar field. This demonstrates that

Fig. 2.10 Cartan parallelogram. Let M be a point on the manifold M and (MP ) and (MQ) two
set of curves intersecting at M . Both MP and MQ are assumed infinitesimal and then constitute
two vectors of the tangent space TMM . Vectors u and v are the images of MQ and MP by
parallel transport along (MP ) an (MQ) respectively. The torsion measures the disclosure of the
parallelogram made up of infinitesimal vectors MP and MQ and their parallel transport v and u
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Fig. 2.11 Cartan parallelogram in a discrete crystal lattice. The non closure of the path ABCDE
measures the number of defect inside the parallelogram. Only one defect (triangle) is represented
here. The opening EA define the so-called Bürgers vector

torsion is a characteristic of the manifold rather than of the field φ. Even for a smooth
field φ on the continuum, the second (covariant) derivative may be non commutative.
If ℵγαβ vanish in some coordinate system, they will vanish in any other coordinate
system. The skew symmetry does not depend on the choice of coordinate system.
Torsion tensor may be associated to defects in a continuum and crystal lattice. It is
well known that defects are often due to the non integrability of displacement and
of gradient of displacement as sketched on Fig. 2.11. Torsion measures the density
of defects on this figure, which reports the discrete lattice version of the continuum
Cartan parallelogram disclosure. The Cartan disclosure may be associated to defects
in matter, namely for crystalline solids with dislocations e.g. Bilby et al. (1955), but
also for the spacetime when considering geometrization of quantum effects e.g. Ross
(1989).

Definition 2.23 (Curvature) The curvature tensor R is a type (1, 3) tensor

{
R(fk, ei , ej , el ) = fk(∇ei∇ej el −∇ej∇ei el −∇[ei ,ej ]el )

Rkij l = (Γ kjl,i + Γ mjl Γ kim)− (Γ kil,j + Γ mil Γ kjm)− ℵm0ijΓ kml
(2.36)

where ei and fi are vector and 1-form on B.

Curvature tensor is also a characteristic of the manifold B, and is skew-
symmetric in its first pair of lower indices (i, j). In the following, we assume that the
base is always associated to a coordinate system, say ℵm0ij ≡ 0. In a n-dimensional

manifold there are n2(n2−1)/12 independent components. Because of its symmetry
properties, only one tensor can be constructed from the curvature tensor, namely the
Ricci curvature tensor �βλ := �ααβλ with six independent components on a three
dimensional manifold e.g. Nakahara (1996).

Remark 2.7 The existence of torsion and curvature tensors does not require the
existence of a metric on the manifold B. The theorem of Frobenius, e.g. Nakahara
(1996), allows us to simplify the expression of the torsion and the curvature
projected onto the vector base associated to a coordinate system.
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Fig. 2.12 Curvature of a sphere. A vector w is defined at point A. This vector is (parallel)
transported along the path ÂBD of the vertical circle by maintaining w parallel to itself and
represented by a dotted arrow. The same vector w is transported along the path ÂCD along the
horizontal circle by maintaining w tangent to the circle. At point D the two transported vectors
initially the same are opposite. This happens due to the non vanishing curvature of the sphere

Remark 2.8 To a connection Γ γαβ on a differentiable manifold M we have associ-

ated torsion ℵγαβ and curvature �γαβλ tensors and then their respective all higher
order covariant derivatives. Conversely, the knowledge of torsion and curvature
on a neighborhood of each point of the manifold also allows us to determine the
connection. At least locally, the manifold geometry with connection is entirely
defined by means of torsion and curvature.

Remark 2.9 Let (u, v,w) be three arbitrary vectors belonging to the tangent space
TxB. Torsion and curvature may be also defined as operators on vectors by writing:

{ ℵ (u, v) := ∇uv−∇vu− [u, v]
� (u, v,w) := ∇u∇vw−∇v∇uw−∇[u, v]w

(2.37)

By using the definition of the connection ∇, it is easy to show that for three
scalar real functions (f, g, h) on the manifold B, we have � (f u, gv, hw) =
fgh� (u, v,w) proving that� is a multilinear object. So is the case forℵ (Fig. 2.12).

Properties 2.3.2 Let consider a vector field u defined on the connected manifold
B, {e1, · · · , en} and

{
f1, · · · , fn} are vector base of TMB and dual vector base on

T∗MB. Then the non commutativity of the second covariant derivatives of the vector
field holds:

∇α∇βuλ −∇β∇αuλ = −ℵγαβ∇γ uλ +�λαβγ uγ (2.38)

Proof It suffices to write first its definition and then its distributive property:

(∇α∇βuλ −∇β∇αuλ)eλ := ∇eα∇eβ (u
λeλ)−∇eβ∇eα (u

λeλ)

= [∇eα
(∇eβ u

λ
)
eλ +∇eα

(∇eβ eλ
)
uλ
]
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− [∇eβ
(∇eαu

λ
)
eλ +∇eβ

(∇eαeλ
)
uλ
]

=
(
−ℵγαβ∇γ uλ +�λαβγ uγ

)
eλ

thanks to the definition of the torsion and the curvature tensor, and Eq. (2.35). This
relation is valid in any coordinate base �. For a metric compatible connection, it is
obvious to derive the relation:

∇α∇βuλ −∇β∇αuλ = −ℵγαβ∇γ uλ + gλμgγ ν�μαβγ uν
Remark 2.10 For the sake of the simplicity, we have considered that {e1, · · · , en}
and

{
f1, · · · , fn} are coordinate basis and coordinate dual basis. It should be also

mentioned that even components uλ(xα) ∈ C 2 are twice differentiable, the non
commutativity of the second covariant derivatives comes from the twisting and the
curving of the manifold B.

Remark 2.11 In view of the property (2.38) the curvature and the torsion tensor may
induce independently the non-commutativity of covariant derivatives of a vector
field u on a curved and twisted manifold B.

Torsion and curvature tensors are intrinsic properties of a connection, and then of
the metric-affine continuum manifold (M , g,∇). In relativistic gravitation, affine
connection may be interpreted from two different point of views. Torsion and
curvature may represent force field (usually the gravitation field for the curvature)
and the geodesics of connections define the classical inertial path of free particles
in standard relativistic gravitation. The second utilization of affine connection is
the curved (and/or twisted) spacetime where material body is evolving e.g. Havas
(1964). For a torsionless metric-affine manifold M , the curvature tensor �γαβλ ≡ 0
identically vanishes if and only if the manifold is flat. It means that Cartesian
coordinate system with gαβ = δαβ (Kronecker symbols) and connection coefficients
Γ
γ
αβ = 0 can be introduced throughout M . It means that the parallel transport of

vectors on M is independent of path, and the covariant derivatives commute.

2.3.4.6 Newtonian Spacetime

In the absence of gravitation, the spacetime of classical (Newtonian) physics
is described by a symmetric tensor gαβ , a 1-form τα , and a symmetric affine
connectionΓ γαβ satisfying the relationships e.g. Bain (2004), Dixon (1975), Goenner
(1974):

⎧
⎪⎨

⎪⎩

gαβ τβ = 0
∇γ gαβ = 0 and ∇ατβ = 0
�γαβλ = 0

(2.39)
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where the first line means the orthogonality condition of the space and time, the
second the metric compatibility of the connection, and the third line expresses
the absence of gravitation forces. The tensor gαβ is required to be (negative)
semi-definite, and of matrix rank 3. We intentionally introduce the contravari-
ant components of the metric since it is clearly related to the relativistic met-
ric. These conditions induce that there is a family of coordinate systems in
which:

⎧
⎪⎨

⎪⎩

gαβ = diag {0,−1,−1,−1} as
(
= lim
c→∞ diag

{
1/c2,−1,−1,−1

})

τα = diag {1, 0, 0, 0}
Γ
γ
αβ ≡ 0

Coordinate systems are related to one another by group of Galilean transformations.
They are identified as inertial frames of references. Equation (2.39) and particularly
the metric compatibility is not sufficient to define a unique inertial frame but rather a
family of frames. Compatibility (2.39) also ensures that there exists a scalar function
t which satisfies τα := ∂αt , meaning that the Newtonian spacetime possesses an
absolute time.

Remark 2.12 Spacetime flatness (third line of Eq. (2.39)) �γαβλ(xμ) ≡ 0 pro-
hibits relativistic rotation between inertial frames. This condition also imposes
at most linearity in the time-dependence of translation between inertial frames,
the relativistic acceleration between them is thus excluded e.g. Bain (2004). This
allows us to define the Galilean group of transformations associated to classical
gravitation e.g. Bain (2004). Previous studies e.g. Andringa et al. (2011) have
shown that the Bargmann group, which is an extension of the Galilean group in
the presence of gravitation, is the gauging group of the Newton–Cartan gravi-
tation. In this way, the metric compatibility and orthogonality conditions in the
relations (2.39) of gαβ an τα allows us to obtain the most general compatible
connection

Γ
γ
αβ = τγ

(
∂ατβ − ∂βτα

)+ (1/2)gγλ (∂αgλβ + ∂βgαλ − ∂λgαβ
)

+ gγλ (ωλατβ − ωλβτα
)

(2.40)

where ω is a 2-form.

In the scope of continuum mechanics, the six independent components of the
curvature constitute six compatibility conditions if equal to zero, ensuring that given
a strain state of the deformed configuration, there are three single-valued compo-
nents of displacement from an initial torsionless and curvature-free configuration
(Marsden and Hughes 1983). To any affine connection, we can associate a torsion
and a curvature tensors. Conversely, the knowledge of the torsion and curvature at
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any point of the affinely manifold B suffices to determine the connection, at least
locally. This further means that the local geometric structure of the manifold is con-
tained, at least locally, in the knowledge of ℵ and�. For a manifold where ℵ(x) = 0
and �(x) = 0, the connection is called flat and the manifold is locally equivalent
to the embedding affine space e.g. Nakahara (1996). In continuum mechanics, the
non twisted, and non curved manifold B constitutes the geometric background of
strongly continuum model e.g. Marsden and Hughes (1983), Rakotomanana (1997).

Remark 2.13 (Transposition Invariance) On an affinely connected manifold M ,∇
with coefficients Γ γαβ , we can define new connection ∇̆ such that Γ̆ γαβ := Γ

γ
αβ −

ℵγαβ = Γ γβα. This transformation is called transposition. This leads to new covariant

derivative. As illustration, for a type (1, 1) tensor Aμν , these two derivatives hold:

∇ρAμν := ∂ρAμν + Γ μρλAλν − Γ λρνAμλ �= ∇̆ρAμν := ∂ρAμν + Γ μλρAλν − Γ λνρAμλ
Consequently, two different curvatures also exist. Curvature is not transposition
invariant since �̆γαβλ �= �γαβλ. Transposition invariance plays role in the non
zero torsion gravitational theories, particularly when investigating the deviation
acceleration of two close curves in an Einstein–Cartan spacetime.

2.3.4.7 Levi-Civita Connection

The Levi-Civita connection is an example of Euclidean connection (derived from
the metric) and introduced by the following theorem:

Theorem 2.1 (Fundamental Theorem of (Pseudo-) RiemannianGeometry) On
any (pseudo-) Riemannian manifold (B, g), there exists a unique connection
compatible with the (pseudo-) metric and free-torsion (ℵ = 0), called Levi-Civita
connection and denoted ∇.

Proof See in e.g. Nakahara (1996). Coefficients of ∇ reduce to symbols of
Christoffel ∂aeb = Γ cba ec, calculated in terms of metric g e.g. Nakahara (1996)

Γ
c

ab = (1/2) gcd (∂bgad + ∂agdb − ∂dgab) (2.41)

By the way, the Einstein theory of relativistic gravitation is built upon the Levi-
Civita connection Γ

c

ab associated to a metric, with zero torsion but nonzero
curvature. For example, if h is a type (0, 2) tensor then the covariant derivative
with respect to ek (a vector of the base) is a type (0, 2 + 1) tensor for which the
coordinates are noticed (care should be taken for place of indices if the connection
is not symmetric)

∇ek hij = hij |k = hij,k − Γ aikhaj − Γ ajkhia (2.42)
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and then with respect to el , the second covariant derivative is hij |k|l with

hij |k|l = hij,kl − Γ aikhaj,l − Γ ajkhia,l − Γ aik,lhaj − Γ ajk,lhia − Γ bil hbj,k
+ Γ bil (Γ cbkhcj + Γ cjkhbc)− Γ bjlhib,k + Γ bjl(Γ cikhcb + Γ cbkhic)
− Γ bklhij,b + Γ bkl(Γ cibhcj + Γ cjbhic) (2.43)

where we have denoted Γ = Γ for the sake of the simplicity. On a metric-affine
manifold, the metric compatibility of the connection holds as ∇g ≡ 0. Metricity
guarantees a local Minkowskian structure in the relativistic gravitation, and a local
Euclidean structure in gradient continuum mechanics e.g. Hehl et al. (1976). This
may be violated when electromagnetic is involved, and this was investigated by
Weyl e.g. Weyl (1929).

For completeness, the components of the curvature tensor associated to the Levi-
Civita connection are derived from (2.41) as:

�λαβμ = (1/2)gλσ
(
∂μ∂αgσβ − ∂μ∂βgσα + ∂σ ∂βgμα − ∂σ ∂αgμβ

)

+ (1/4)gλσ (∂αgσγ + ∂γ gασ − ∂σ gαγ
)
gγ κ

(
∂βgκμ + ∂μgβκ − ∂κgβμ

)

− (1/4)gλσ (∂βgσγ + ∂γ gβσ − ∂σ gβγ
)
gγ κ

(
∂αgκμ + ∂μgακ − ∂κgαμ

)

Remark 2.14 Apart from Levi-Civita connection ∇, there exists Cartan connection
∇ metric compatible ∇agbc ≡ 0 with non symmetric coefficients Γ cab − Γ cba �= 0. It
should be pointed out that ∇ek hij �= ∇ekhij . The condition that metric is covariantly
constant with respect to ∇ means that length measuring “rods” and angle between
two arbitrary rods remain constant along parallel transport ∇ e.g. Verçyn (1990).

Metric compatibility allows us to have local Euclidean structure at each point P
of the metric-affine manifold (B, g,∇). Moreover, metric compatibility permits to
decompose the connection coefficients e.g. Nakahara (1996): Γ γαβ = Γ γαβ +Dγαβ +
Ω
γ
αβ , where the skew symmetric termΩγαβ is considered as non holonomic rotation,

and symmetric term D
γ
αβ stands for non holonomic strain e.g. Rakotomanana

(2005):

Ω
γ
αβ = (1/2)(Γ γαβ − Γ γβα), D

γ
αβ = gγλgαμ Ωμλβ + gγλgμβ Ωμλα (2.44)

The sum T
γ
αβ := Ωγαβ +Dγαβ is called contortion tensor whereasΩγαβ is often called

the object of the anholonomy. In the general case, curvature does not vanish, say

�λαβμ �= 0.

Remark 2.15 In relativistic gravitation, metric compatibility can be also visualized
as the condition the spacetime to be a set of microcosms e.g. Gonseth (1926)
glued by the affine connection within a Minkowskian spacetime. The presence
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of the anholonomy supplies the spacetime with additional rotational degrees of
freedom e.g. Hehl and von der Heyde (1973). Another practical advantage of
metric compatibility is the possibility of raising and lowering of indices of tensors
very easily. For generalized continuum mechanics, and particularly for crystals
with defects, the non compatibility is necessary to extend the model to include
Somigliana dislocations e.g. Clayton et al. (2005).

Properties 2.3.3 Let B be a Riemannian manifold and P ∈ B any point. In
orthonormal base associated to a normal coordinate system centered on P , the

symbols of Christoffel vanish: Γ
k

ij (P ) = 0 for i, j, k = 1, . . . , n.

2.3.4.8 Normal Coordinate System and Inertial Frame

A normal coordinate system on a Riemannian manifold B centered at P may
be also defined by local relations: gαβ(P ) := δαβ , and Γ

γ

αβ(ξ) ξ
αξβ ≡ 0,

where (ξ1, · · · , ξn) are local coordinates of points P ′ := P + ξ about the center
P . This should be related to the local form of the equivalence principle in the
theory of relativity (Krause 1976). Riemannian normal coordinates are standard
tool to demonstrate various differential geometry theorems, their use to derive
equations allows us to simplify resolution of most problems. The use of normal
coordinates may enlighten the introduction of the curvature tensor as arguments of
the Lagrangian density. Let ∇ be a metric compatible and torsion free connection,

if we assume that L = L (gαβ, ∂αΓ
κ

βλ + Γ ξβλΓ καξ ) then it is worth to consider

L = L (gαβ,�γαβλ). Indeed, this could be related to Taylor expansion of metric
about a point xμ:

g
(
xμ; ξ) = gαβ

(
xμ
)

︸ ︷︷ ︸
Simple material

−1

3
�αβγ λ

(
xμ
)
ξβξλ

︸ ︷︷ ︸
2rd strain gradient

−1

6
∇σ�αβγ λ

(
xμ
)
ξβξλξσ

︸ ︷︷ ︸
3nd strain gradient

(2.45)

where we have calculated the perturbation of the length ds2 = gαβdxαdxβ when a
small term ξμ is superimposed on dxα (Cartan’s theorem). Therefore it may exist a
form-invariant Lagrangian density depending on the metric and on the curvature
associated to ∇. Torsion does not appear since we a priori assume torsionless
connection. No confusion will be done between the partial differentiation of a tensor
field with respect to yk (in the sense of Levi-Civita) and the differentiation with
respect to the affine connection ∇ek . It has been shown that in a flat spacetime the
vanishing of the connection coefficients (here reduced to the Chistoffel’s symbols)
Γ
γ
αβ (x

μ) ≡ 0 is the necessary and sufficient condition for the system of coordinates
{xμ} define an inertial frame e.g. for either classical mechanics (Kadianakis 1996),
or relativistic mechanics (Krause 1976; Manoff 2001a) (at least locally). In a
locally inertial frame where Γ γαβ (x

μ) ≡ 0, the components of the curvature can
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be calculated by means of the Christoffel’s symbols to give, without going into
details: �γαβλ = (1/2)gγ σ

(
∂λ∂αgσβ − ∂λ∂βgσα + ∂σ ∂βgλα − ∂σ ∂αgλβ

)
, which is

valid only in the local flat coordinate system centered at xμ. This relation is not
a tensorial relation. From this relation we calculate Riemann curvature �αβλμ :=
�γαβλ gγμ. Conversely, even in a curved spacetime or space, it is possible to make

the Christoffel symbols Γ
γ

αβ vanish at any one point, but not in its neighborhood.
This is related in relativistic gravitation to the finding of a locally inertial frame
(local equivalence principle).

Remark 2.16 The equivalence principle between inertia and gravitation is correct
only at a point in a strict sense. Extended to a finite region surrounding the point,
the equivalence principle no more holds (Shen and Moritz 1996). For non zero
torsion field on a metric-affine manifold M , connection coefficients Γ γαβ cannot
be transformed to zero any longer.

2.3.5 Tetrads and Affine Connection: Continuum
Transformations

Starting from a flat Euclidean space or from a flat Minkowski spacetime M , we
may obtain a twisted and/or curved space or spacetime B by using multi-valued
transformations and tetrads.

Consider a manifold (B, g) embedded in a n-dimensional Euclidean space E .
Let X ∈ B a point of the manifold, and let consider a mapping ϕ which associates
X to a point of the Euclidean space x ∈ E . We denote the mapping x(X) for
simplifying and recall that the image ϕ (B) is a manifold. This section reminds
that defects theory may be also modeled within the framework of Einstein–Cartan
theory of gravitation e.g. Ruggiero and Tartaglia (2003). Both of them have similar
equations and geometric background. Here we shortly present the tetrad (triad)
approach by locally defining set of vectors eα (X) , α = 1, n, (n=3 or 4) rather than
directly mapping x (X). Extension to four-dimensional spacetimes is obvious.

2.3.5.1 Transformation of a Continuum

Basically, a continuum material body is a three-dimensional differentiable manifold
B such that there exists a global orientation-preserving diffeomorphismsψ : B→
ψ (B) ∈ E . The image of B is a connected subset of the Euclidean space.
Configurations of the continuum are defined by the pair (ψ,ψ(B)). For classical
mechanics, time parameter t can be defined with an absolute manner independently
on the space E . Given two configurations of the continuum matter corresponding
to two time parameters tr (reference) and tc (current), a transformation of the body
with respect to the reference configuration (ψr , ψr(B)) is a mapping (Fig. 2.13):

ϕ := ψc ψ−1
r (2.46)
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Fig. 2.13 Transformation of a continuum B with respect to a reference configuration
(ψr , ψr(B) ∈ E ). Both the current configuration (ϕ,ψc(B) ∈ E ) and the reference configurations
belong to the Euclidean space. Most studies consider the reference configuration as the initial
configuration of the body and also assume that B and ψr(B) are merged

where (ϕ,ψc(B)) is the current configuration with respect to (ψr , ψr (B)). Differ-
ent cases may occur by considering, for the sake of the simplicity, that the set B
is a flat manifold (no torsion and no curvature). The first case is when the current
configuration is defect-free in the sense that the mapping ψr is a diffeomorphism
ensuring that the reference configuration has zero torsion ℵr ≡ 0 and zero curvature
�r ≡ 0. In such a case, If ϕ is a diffeomorphism, then the current configuration
is also defect-free. Conversely if such is not the case, torsion and/or curvature
may appear at the current configuration meaning creation of defect during the
transformation. The second case occurs when the reference configuration is not
defect-free in the sense that ψr is not a diffeomorphism, then the torsion and/or
the curvature are not equal to zero in this reference configuration, ℵr �= 0 and zero
curvature �r �= 0. In the same way the current configuration has the following
internal defects ℵc �= 0 and zero curvature �c �= 0. In such a case, two cases may
occur, the first where there are additional creation of defects then ℵc �= ℵi and
�c �= �i (ϕ is not a diffeomorphism), and the second one where ℵc ≡ ℵi and
�c ≡ �i . The present section will give some details about all these possibilities.

2.3.5.2 Holonomic Mapping

Let consider a smooth and single-valued mapping (it is a homeomorphism and
we call it holonomic mapping e.g. Rakotomanana 2003). It is usual to define
the deformation gradient which is also called basis triads (rigorously it is not
a gradient e.g. Marsden and Hughes 1983) in components form, together with
its dual basis triads: F iα (X) := ∂αx

i (X), and Fβj (x) := ∂jX
β (x). The triads

satisfy orthogonality and completeness relationships: F iα (X) F
β
i [x (X)] = δ

β
α ,

and F iα (X) F
α
j [x (X)] = δij . We may write the vector transformation and the

metric components, where êi is a vector rigidly attached to the Euclidean space
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E : eα = F iα êi , and gαβ = g
(
eα, eβ

)
. On the one hand, if the transformation x(X)

is smooth and single valued, it is integrable, i.e. its derivatives commute, due to
the Schwarz’s integrability conditions: ∂βF iα − ∂αF iβ = ∂β∂αx

i − ∂α∂βxi = 0.
On the other hand, we can differentiate the vector base, and implicitly define the
affine connection coefficients (called Weitzenböck connection): ∂αeβ := Γ γαβ eγ =
∂αF

i
β êi = F

γ
i ∂αF

i
β eγ with Γ γαβ = F

γ
i ∂αF

i
β . Torsion tensor is zero during

an holonomic transformation ℵγαβ := (∂αF
i
β − ∂βF iα)F γi = 0 and the curvature

vanishes whenever Γ γαβ are of class C 1. Weitzenböck connection implicitly assumes
that there is a Minkowskian spacetime as ambient spacetime. Otherwise, one has to
introduce a slightly general definition as Γ γαβ := Fγi Γ̂ ijβ F jα + Fγi ∂αF iβ , where F iα
and Γ̂ ijβ can be considered a Poincaré gauge potentials e.g. Cho (1976b), Malyshev
(2000), Obukhov et al. (1989).

Remark 2.17 Tetrads satisfy the condition +∞ ≥ Det[F iα(xμ)] > 0 at each point
x ∈ M . They constitute a group of isomorphisms, a Lie group of dimension n2

called general linear group and denoted GLn(R). Nevertheless, tetrads may have an
infinite value for determinant. Its inverse may thus not be defined.

Remark 2.18 Usual continuum transformation preserves its topology, meaning that
close points remain close. Accordingly there are two equivalent descriptions: (a)
material or Lagrangian description (with respect to a reference configuration,
usually initial configuration); and (b) spatial or Eulerian description (with respect
to a current state, position of the points of the continuum). Transformations are
diffeomorphism, and bodies are differential manifolds e.g. Marsden and Hughes
(1983).

2.3.5.3 Nonholonomic Mapping and Torsion e.g. Kleinert (2000)

Let now consider transformations which do not preserve the topology of bodies.
The idea behind generalized continua models, and particularly for strain gradient
continua is to define an extended geometric structure for bodies by including
additional degrees of freedom. For these continua “macroscopic” mapping is still
diffeomorphism whereas evolution of geometric structure modifies the bodies inter-
nal topology e.g. Rakotomanana (1997). We recall in the following how to describe
such transformations in the scope of generalized continuum e.g. Pettey (1971)
by using of differential geometric and affinely connected manifolds. Commonly,
a generalized continuum is a connected, locally connected, and locally compact
metric manifold. Manifold B is locally compact, if every point of B has a compact
neighborhood. B is connected if it cannot be written as an union B = B1 ∪B2
where B1 and B2 are both open and B1 ∪B2 = ∅. It is locally connected, if every
point of B has a connected neighborhood e.g. Nakahara (1996).

Say a mapping X → x that is not smooth and/or not single valued. In such
a case, the triads F iα(X

μ) are not integrable. Of course, it is possible to map the
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Fig. 2.14 Shear deformation: homeomorphic mapping or holonomic transformation ϕ1 ∈ C1

and ϕ−1
1 ∈ C1, and nonholonomic transformation ϕ2 /∈ C0, here including Volterra translational

dislocations (inducing “fragmentation” to obtain brick elements) here +∞ ≥ DetF iα > 0

tangent vector dX to the vector dx via an linear tangent transformation defined
by the triads: eα = F iα êi , and dxi = F iα dX

α in which the non integrability
of F iα (X) means that: ∂βF iα − ∂αF iβ = ∂β∂αx

i − ∂α∂βxi �= 0. This mapping
is called non holonomic. It is worth to modify the previous development to
give ({ê1, · · · , ên} is assumed attached to the Euclidean space): ∂αeβ − ∂βeα =
F
γ
i (∂αF

i
β − ∂βF iα)eγ := ℵγαβ eγ �= 0 showing that the torsion ℵγαβ is not zero

for such a mapping. It does not lead to a single-valued mapping x (X). This
transformation captures translational dislocations of Volterra e.g. Maugin (1993). It
is well-known, see Fig. 2.14 that a macroscopic shear deformation may be modeled
by either a homeomorphism ϕ1 ∈ C 1 from an initial non defected configuration,
or a non homeomorphic transformation (here not even single-valued) ϕ2 /∈ C 0

inducing the same macroscopic shear, but the nonholonomic map ϕ2 includes
“perturbed” transformations at another length scale. Rather than directly considering
the discontinuity of the displacement field [u], we prefer to extend the continuum
model to weakly continuous model where both the strain (change of the metric) δgαβ
and connection change δΓ γαβ are considered: in sum, use of the Riemann–Cartan
manifold e.g. Rakotomanana (1997).

Remark 2.19 Although the knowledge of the 9 triads (resp. 16 tetrads) F iα (X)
allows us to define the 6 (resp. 10) metric components gαβ , the inverse is
not true. Triads (resp. tetrads) are determined only up to Galilean (resp.
Lorentzian) transformation which possibly vary with point location X e.g. Utiyama
(1956).

Typical example of torsion in the continuum theory is given by edge dislocation
where multi-valued transformation of continuum is defined together with its basis
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tetrads (b is the norm of the Burgers vector) e.g. Kleinert (2000, 2008):

{
x1 = X1

x2 = X2 − (b/2π) arctan(X2/X1)
F iα =

b

2π

1

(X1)2 + (X2)2

(
1 0
X2 −X1

)

It is easy to calculate the torsion induced by this multi-valued transformation from
a non defected initial continuum: ∂1F

2
2 − ∂2F

2
1 = −b δ(2) (x) �= 0, with other

components equal to zero. Since the tetrads are single-valued, then the curvature
tensor is identically equal to zero. Although easily visualized, the usual Bürgers
vector may present drawback from the topological point of view (Yang et al.
1998). Indeed, the integral bγ := ∮ ℵγαβ dxα ∧ dxβ around a closed path in a
twisted manifold B is not diffeomorphism invariant in a such way that it violates
the coordinate invariance. Under non uniform coordinate transform x̃μ(xα) it is
straightforward to show that the components of the Bürgers vector in this new
coordinate system hold b̃λ := ∮ ℵ̃λμν dx̃μ ∧ dx̃ν =

∮
J λγ ℵγαβ dxα ∧ dxβ is

different of J λγ b
γ . Indeed J λγ (x

κ) := ∂x̃λ/∂xγ is not necessarily uniform over
the manifold (Yang et al. 1998). The density of dislocation is conversely a good
candidate for characterizing the manifold twist. There are three rectilinear infinite
Volterra dislocations, when considering a dislocation line along a given axis, say the
screw, edge and climb dislocations (Kleman and Friedel 2008). The non integrable
part of the tetrads of all of these kinds of dislocations could be expressed as
F∗(x) := b ⊗ n(x) δΩ(x), where δΩ is a Dirac distribution localized on the
discontinuity surface Ω having the unit normal n(x) at point x. Expressions of
the displacement fields corresponding with the three linear dislocations may be
developed in a rigorous way, accounting for the distributional components within
the dynamical framework e.g. Pellegrini (2012).

Remark 2.20 In the scope of relativistic gravitation, the previous nonholonomic
deformation together with non zero torsion is better approached by considering
the spacetime absolute transport as follows. Let two distinct events (positions) of
the spacetime v := vα eα and w := vα eα. The two vectors are parallel if their
components are equal, owing that the base vectors eα(xμ) and eα(xμ + dxμ) are
respectively functions of the events where they are defined in the spacetime. The
affine connection Γ γαβ := Fγ ∂αF

i
β is then easily obtained in the Weitzenböck

spacetime (zero curvature) e.g. Hayashi (1979). The Weitzenböck spacetime reduces
to Minkowski spacetime when the torsion is equal to zero, meaning that the tetrad
F iα(X) is integrable.

2.3.5.4 Nonholonomic Transformation and Curvature

Consider a transformation X→ x(X) which may be not integrable, more precisely
a multi-valued function. It is known that such a mapping is not sufficient to describe
all topological defects in the framework of crystalline solids e.g. Kleinert (2000),
Rakotomanana (1997). To go further we must also add the multi-valuedness of the
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tetrads F iα themselves, meaning a possible rotation degree of freedom of the tetrads
basis too.

More precisely, first derivatives of vectors {e1, · · · , en}, where eα := F iα êi ,
are not integrable, then second-order derivatives do not commute (cf. Schwartz’s
theorem): ∂α∂β eλ − ∂β∂α eλ = ∂α(Γ

κ
λβeκ) − ∂β(Γ κλαeκ) := R

γ
αβλ eγ . Therefore,

Cartan curvature does not vanish: R
γ
αβλ = (∂αΓ

γ
βλ + Γ

μ
βλΓ

γ
αμ) − (∂βΓ

γ
αλ +

Γ
μ
αλΓ

γ
βμ) �= 0. As for the Weitzenböck connection, essentially defined in a flat

spacetime, a more rigorous method would be the introduction of additional gauge
fields Γ̂ ijβ(x

μ) to give the (not torsionless) connection Γ γαβ := Fγi Γ̂ ijβF jα +Fγi ∂αF iβ
e.g. Obukhov et al. (1989). This means that we create curvature for gradient
continuum (or for the spacetime in the relativistic gravitation framework e.g. Cho
1976b) by introducing quantities Γ̂ ijβ(x

μ) to generate non zero curvature. Such
a transformation may be related to the process of rotational dislocations e.g.
Maugin (1993), or some plastic deformation of matter e.g. Kobelev (2010). Typical
example for the presence of non vanishing curvature is given by the multivalued
transformation: xi := δiμ[Xμ + Ω ε

μ
ν X

μ arctan(X2/X1)], where Ω ∈ R is a
rotation angle, and εμν denotes the antisymmetric Levi-Civita tensor. We check that
the torsion tensor is equal to zero and that only one Riemann curvature component
does not vanish: �1212 = −2π Ω δ(2) (x) �= 0. This transformation is associated
to edge disclination e.g. Kleinert (2008), where angle Ω is assumed small e.g.
Ruggiero and Tartaglia (2003).

In sum, connection in a twisted and curved spacetime cannot be obtained only in
terms of triads/tetrads. It is necessary to introduce a spin connection as follows:
Γ̂
γ
αβ := F

γ

i ∇̂αF iβ where the symbol ∇̂ denotes the spacetime connection (not
necessarily torsionless) which is different from the matter connection ∇ e.g. Cho
(1976a,c) (Kibble suggested to introduce additional gauge potentials to create
spacetime curvature; Kibble 1961). The explicit formulation takes the form of
Γ
γ
αβ := F

γ

i ∂αF
i
β − Fγi Γ̂ λαβF iλ where the first term reduces to the Weitzenböck

connection with non zero torsion but zero curvature. The second term γ̃
γ
αβ :=

F
γ

i Γ̂
λ
αβF

i
λ has a role of spin connection, with possibly nonzero torsion (twisted

spacetime) and/or non zero curvature (curved spacetime) e.g. Cho (1976b), in
generalized teleparallel gravitation theory (Sotiriou et al. 2011). Such a connection
is metric compatible.

Remark 2.21 By definition, the multi-valued tetrads form parallel field in the sense
that ∇βF iα := ∂βF iα − Γ λβαF iλ = ∂βF iα − Fλj (∂βF jα )F iλ ≡ 0. Therefore the induced
metric is also a parallel tensor showing that the connection is metric compatible
∇λgαβ = 0.

2.3.5.5 Torsion, Curvature, and Smoothness of Tensor Fields

The role of torsion and curvature in continuum mechanics are not limited to describe
translation dislocations and rotation disclinations. Experimental testings have shown
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Fig. 2.15 The Hall-Peach effects are characterized by the increase of the strength of polycrys-
talline metals when the grain size decreases. The adimensional number λ := d/L is defined for
accounting for scale length. For samples with λ � 10−6 → 0 it is usual to consider plasticity
using macroscopic continuum models. Gradient models are worth for samples with intermediate
λ � 10−3 → 10−1, whereas micro-mechanics theories as discrete crystalline plasticity is better
for λ � 10−1 → 1

the existence of a material length scale for microcracking and plasticity of materials.
Roughly speaking, continuum plasticity is used at macroscopic level (≥300 μm)
whereas microscopic slip models constitute the basic tool for crystalline plasticity
(�10−4 μm). In between, gradient continuum models have been proposed to model
mesoscopic plasticity e.g. Rakotomanana (2005). More precisely, four regions of
plastic behavior usually exist. The first occurs at lengthscale below approximately
200 Å (corresponding to roughly 104 atoms). The second kind of plasticity behavior
appears at 2 μm (corresponding to nearly 108 atoms). The third spatial domain
ranges between 2 and 300 μm, where the influence of lengthscale still pertains.
Thus the influence of the length scale cannot be neglected, suggesting to use the
Riemann–Cartan manifold as geometric background for generalized continuum
model. On Fig. 2.15, we sketch the influence of grain size (microcosms e.g. Gonseth
1926) on the continuum modeling by defining appropriate length scale λ. We now
remind result obtained in a previous work on weakly continua (Rakotomanana
1997), where discontinuity of field is assumed to be diffuse and to continuously
vary within matter. We have considered a class of continua for which both scalar
field and vector field may be discontinuous.

Theorem 2.2 (Theorem on Discontinuous Fields) Consider a metric-affine man-
ifold B. Let θ be a scalar field on B. If the variation of θ from one point to another
point depends on the path then the torsion field in B does not vanish ℵ �= 0 and it
characterizes the discontinuity of field θ on B. Let w be a vector field on B. If the
variation of w from one point to another point depends on the path then ℵ or � do
not vanish on B and they characterize the discontinuity of field w on B.

Proof See in e.g. Rakotomanana (1997). ��
The generalized continuum model presented here is based on the Cartan’s circuit
concept where the continuum B does not have any lattice structure (Noll 1967).
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A continuum B is said affinely equivalent to the ambient Euclidean space E if
and only if the torsion and curvature tensor fields are identically null at every
point of B. We observe at least two classes when considering transformations of
continuum with an initial defect-free configuration: (a) the actual configuration
remains defect-free, for which the mapping from initial and actual configurations
is a diffeomorphism; and (b) the current configuration presents defects, for which
the mapping is not a diffeomorphism. For this second case, there is no global
coordinate system in the current configuration which can be associated to the initial
configuration by the relation dxi = F iα dXα , since F iα(X

μ) is not integrable on the
whole continuum B.

Torsion is not only associated to translational dislocations but also to local
discontinuity of scalar field on a continuum B. Curvature is not only associated
to rotational dislocations but also to local discontinuity of vector field on continuum
e.g. Katanaev and Volovich (1992), Rakotomanana (1997), Ruggiero and Tartaglia
(2003). The geometric structure behind these continuum models are the following:
(a) metric-affine geometry for arbitrary metric g and connection with torsion ℵ �= 0
and curvature � �= 0; (b) Riemann–Cartan geometry if additionally the connection
is compatible with the metric ∇g ≡ 0 and (ℵ �= 0,� �= 0); (c) Riemann geometry
for compatible connection and (ℵ ≡ 0,� �= 0); (d) Weitzenböck geometry for
compatible metric and (ℵ �= 0,� ≡ 0); and (e) Euclidean geometry for compatible
metric and (ℵ ≡ 0,� ≡ 0).

Strain gradient continuum may undergo inelastic deformation. The existence of
sharp gradients of field in adiabatic matter shear bands during plastic deformations
after high velocity impact, constitutes a typical strain gradient continuum. Such
is also the case for matter constituted of grains, at an appropriate length scale. In
the scope of crystalline solid mechanics, Le and Stumpf have shown in e.g. Le
and Stumpf (1996) that elastic and plastic deformation fields, as well as the local
associated rotations can be uniquely calculated from both the metric components
gαβ , and the torsion components ℵγαβ , if the curvature associated to the connection

identically vanishes �λαβμ ≡ 0. In the scope of strain gradient continuum and
classical mechanics, we consider the product of manifold M := T × B, where
B reduces to a three-dimensional Riemann–Cartan manifold, endowed with a
connection with torsion and curvature. We first recall the definition of the Riemann
curvature �αβλμ := �γαβλ gγμ with n4 components on a n-dimension manifold.
Various symmetries of Riemannian curvature reduce the number of independent
components to n2(n2 − 1)/12. Second, the skew-symmetry of the torsion tensor
with respect to the two lower indices also diminishes the number of independent
components of ℵγαβ . On a 3D continuum, the curvature field on a 3-manifold is

entirely characterized by the Ricci curvature Rαβ := �λλαβ with 9 components.

Remark 2.22 From a topological point of view, a generalized continuum may
be defined by a locally connected and locally compact manifold. This class of
generalized continuum is metrizable if it has a one-to-one continuous image in
a metric after Proizvolov theorem e.g. Pettey (1971) (resp. semi-metric) space
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Fig. 2.16 (Left) Illustration of a shear band formation resulting from a displacement discontinuity
at pointsM ′ andM". (Right) Corresponding Cartan’s circuit with area ε1×ε2. At the macroscopic
level, nucleation and migration of a great number of discontinuities (defects) appear on the
macroscopic continuum boundary, and give rise to macroscopic plastic strain (Lüders-Hartmann
bands)

(Euclidean ambient space) in classical continuum mechanics (resp. Lorentzian
spacetime for relativistic gravitation).

For establishing the covariance of constitutive laws of strain gradient continuum,
we limit to coordinate systems (xα) and (yi) that are all diffeomorphically equiva-
lent to each other. This involves a larger group than orthogonal transformations and
also larger than the class of linear transformations, but it remains a small fraction
of all possible change of coordinate systems e.g. Nakahara (1996), Rakotomanana
(2003). Further studies in this direction still hold as great challenge, by considering
the concept of path-dependent integration method e.g. Kleinert (2008). The path
dependence is illustrated by the Cartan circuit together with discontinuities of fields
(Fig. 2.16). Dislocations may be considered as discontinuity of displacement field
(Burgers vector) and the density of dislocations may be calculated by torsion tensor
field on continuum manifolds. Discontinuity of geometrical variables are not only
well sound from mathematics point of view, they also have real physical meaning.
Some experimental studies have shown the possibility of measuring an abrupt
change of density by means of High Resolution Transmission Electron Microscopy
e.g. Barra et al. (2009).

Say an affinely connected manifold B. Let consider two vectors f1 and f2 at a
pointM , they define two paths of length ε1 and ε2. Non zero torsion and curvature
fields induce the following relationships (Rakotomanana 1997):

⎧
⎨

⎩

lim
(ε1,ε2)→0

(θ ′ − θ ′′)/ε1ε2 = ℵ (f1, f2) [θ ]

lim
(ε1,ε2)→0

[fγ (w′)− fγ (w")]/ε1ε2 = � (f1, f2,w, fγ )− fγ
(∇ℵ(f1,f2)w

)

(2.47)

where θ (x), and w (x) are respectively a scalar field and a vector field on B.
We notice θ ′ := θ

(
M ′), and θ ′′ := θ

(
M ′′); and w′ := w

(
M ′), and w′′ :=

w
(
M ′′). The system of equations (2.47) are the continuum extension of the discrete
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dislocation loop which is characterized by a Burgers vector b := [u], defined by
the discontinuity of the displacement field within continuum (otherwise strongly
continuous elsewhere) b := − ∮C du. The integral is calculated along a closed curve
C around the isolated dislocation. For multivalued fields, the concept of generalized
continuum allows us to define locally connected (and locally compact) manifolds
rather than directly accounting for discontinuity of scalar and vector fields, θ(x) and
w(x). If the curvature vanishes, vector field is however necessarily not single-valued
as shown by the second equation (2.47). These relations show the interdependence
of translation and rotation dislocations and therefore their practical co-existence.
The twisted and curved continuum manifold offers a representation of a material
(resp. spacetime) manifold that is everywhere dislocated (resp. singular or with
continuously distributed spins). Moreover, these relations may be read from right
to left direction, and state that whenever ℵ or � are not equal to zero then any scalar
and vector fields on the affinely connected continuum B are necessarily multi-
valued fields. For Riemannian continua, only vector fields may be multivalued,
whereas for Weitzenböck continua e.g. Hayashi (1979), only scalar field and some
particular vector field may be multi-valued, since � ≡ 0. Within the class of the
Weitzenböck continua, Le and Stumpf analyzed the existence and uniqueness of an
anholonomic crystal reference in the domain of nonlinear dislocations and similarly
for elastic plastic deformation of continua (Le and Stumpf 1996). They showed
that elastic and plastic deformations fields, with corresponding rotation fields, are
uniquely determined from the metric gαβ and the torsion ℵγαβ , if the curvature tensor
of crystal reference identically vanishes (it constitutes the integrability condition).
For a larger class of Riemann–Cartan continua, there is influence of both torsion
and curvature e.g. Bruzzo (1987), Capoziello and de Laurentis (2011), Clayton et al.
(2004), Shapiro (2002), Utiyama (1956).

Remark 2.23 The analogy between continuum with defects in three dimensions and
extension of the Minkowski spacetime (flat, smooth) to spacetime with curvature
and then to spacetime with curvature and torsion seems to be straightforward e.g.
Ruggiero and Tartaglia (2003). Indeed it is tempting to state that the extended
spacetimes can be considered as Minkowski spacetime with distributions of defects
such as discontinuity of scalar and vector field. In three dimensional dislocations
theory, the link between the discontinuity of tensor fields (scalar and vector here)
and the presence of torsion and curvature fields over a manifold (2.47) is illustrated
by the Volterra processes which can be described by a well known “cut and paste”
scheme. Mathematically, these two tensors also represent the non integrability
of differential duα meaning that the displacement field is multivalued. Volterra
processes lead to three relativistic translations of two regarding lips and three
relativistic rotations of the same lips e.g. Rakotomanana (2003). When passing
from continuum mechanics in three dimensions to relativistic gravitation in four
dimensions, there is a difference because the curvature tensor is entirely defined by
means of Ricci curvature (six independent components) whereas in four dimension,
this is not the case.
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2.4 Invariance for Lagrangian and Euler–Lagrange
Equations

Most physics phenomenae within continuum may be described by a Lagrangian
function L defined on the continuum manifold. Equations governing the fields
inside the continuum may be derived by means of this Lagrangian. One common
point of the most theories of physics is the spacetime where motion and more gen-
erally evolution of fields happens. Therefore, any Lagrangian function should have
at least the geometric arguments: metric components and their partial derivative,
connection coefficients and their partial derivatives.

The two invariance conditions namely the covariance and the gauge invariance
of Lagrangian function are first introduced here by means of well known simple
system, a material point in motion within a reference frame and subject to a
potential field. Then it will be extended to derive the Euler–Lagrange equations in
continuum physics. Roughly speaking, covariance helps to rigorously define the list
of arguments of the Lagrangian function, whereas gauge invariance helps to define
the conservation laws of fields describing physics inside continuum.

Overview of these two invariance condition is sketched in this subsection, and
will be treated more in details in the next chapters.

2.4.1 Covariant Formulation of Classical Mechanics
of a Particle

Let M be a material point of mass m in motion with a velocity v with respect to a
Galilean reference R. The material point is submitted to an external force deriving
from a potential U . The Newton’s law is written accordingly:

ma = −∇U := F (2.48)

where a and ∇U denote the acceleration with respect to R and the gradient of
the potential respectively. For example, a uniform gravitation g the potential takes
the form of U := −mg · OM whereas for the gravitation field generated by
a massive body of mass M , the potential takes the form of U = −GMm/r
where r denotes the distance between the test particle of mass m and the mass
center of the body. Once the reference is chosen, we have to define a coordinate
system and its associate local base to project onto the motion equation (2.48).
For the sake of the simplicity, the three standard coordinate system are reported
on Fig. 2.17: The projection of the Newton’s equation (2.48) onto the local base
does not induce a covariant formulation of the particle motion. To overcome this
difficulty, a covariant formulation is obtained by first defining the Lagrangian of
the material point as L := (m/2)‖v‖2 − U = L (t, qα, q̇α) where qα denotes
any admissible coordinate system and q̇α its derivative with respect to t . Second
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Fig. 2.17 Coordinate systems and their associate orthonormal local bases: (a) Cartesian
(x1, x2, x3) with (e1, e2, e3), (b) Cylindrical (r, θ, z) with (er , eθ , ez), and (c) spherical (r, θ, ϕ)
with (er , eθ , eϕ)

we deduce the Euler–Lagrange equation by varying the Lagrangian δL along a
small variation δqα . A straightforward and classical calculus allows us to derive the
so-called Euler–Lagrange equation:

∂L

∂qα
− d

dt

(
∂L

∂q̇α

)
= 0, α = 1, 3 (2.49)

Independently on the choice of coordinate system (qα = (x1, x2, x3), qα =
(r, θ, z), or qα = (r, θ, ϕ)), the system of equations (2.49) keeps the same shape,
it is said covariant motion equation of the material point. For a material point of
mass m in a plane with the velocity v and subject to a potential U , let us derive the
motion equation by using two different formulations. We consider a Cartesian and
a polar coordinate systems.

1. Newton’s formulation of the point motion holdsma = −∇U
⎧
⎪⎨

⎪⎩

mẍ = −∂U
∂x
(x, y)

mÿ = −∂U
∂y
(x, y)

⎧
⎪⎨

⎪⎩

m
(
r̈ − rθ̇2

) = −∂U
∂r

(r, θ)

m
(
rθ̈ + 2ṙ θ̇

) = −1

r

∂U

∂r
(r, θ)

Obviously the formulation of Newton for the mechanics of a point and more
generally of any arbitrary system is not covariant. The shape changes after a
coordinate transformation.

2. Lagrange’s formulation of the point motion writes with the Lagrangian L :=
(m/2)|v|2−U and the Poincarés invariance δ

∫ tf
ti

L dt = 0 with worth boundary
conditions:

⎧
⎪⎪⎨

⎪⎪⎩

d

dt

(
∂L

∂ẋ

)
− ∂L
∂x

= 0

d

dt

(
∂L

∂ẏ

)
− ∂L
∂y

= 0

⎧
⎪⎪⎨

⎪⎪⎩

d

dt

(
∂L

∂ṙ

)
− ∂L
∂r

= 0

d

dt

(
∂L

∂θ̇

)
− ∂L
∂θ

= 0
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Fig. 2.18 In the framework of Newton mechanics, the mass m is subject to a force exerted by the
mass M by considering that motion evolves within a rigid and absolute spacetime

This constitutes the simplest example illustrating the covariance of the Lagrange
formulation. Of course, we arrive to the Newton’s equations when the Lagrangian
L is explicitly formulated. In the next section, we extend this concept.

By the way, we remind some basic notions on the orbits of a test particle
submitted to a central gravitational force due to a mass M . The Lagrangian of
a test particle of mass m (test particle means that its mass m does engender a
gravitation filed since m << M): L = (m/2)

(
ṙ2 + r2θ̇2

) − U (r). Considering
the motion in the plane containingM and m is sufficient. Since ∂θL ≡ 0, it is then
straightforward to show that the total mechanical energy in any (three-dimensional)
central potential is conserved and takes the form of:

E = m

2
ṙ2 + �2

2mr2 +U (r), � := mr2θ̇

where � is the magnitude of the angular momentum vector of the particle, which is
conserved (first invariant). For Newtonian gravity, the particular form of total energy
holds (Fig. 2.18):

E = m

2
ṙ2 +Ueff , Ueff := �2

2mr2 −G
Mm

r
(2.50)

The energy E is the second invariant of the motion. Ueff is called effective
potential. Expressions of the invariants give the orbits differential equations as
follows:

⎧
⎪⎨

⎪⎩

ṙ =
√

2

m

(
E −Ueff (r)

)

θ̇ = �

mr2

(2.51)

The combination of the two invariants � and E allows us to express the parametric
equation of the orbits as connecting r and θ :

dθ

dr
= �/(mr2)
√

2/m[E −Ueff (r)]
(2.52)
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Two types orbits are possible for this effective potential: (a) bound orbits with
energy E < 0, and (b) unbound orbits with energy E ≥ 0. We will investigate some
orbits corresponding to these Newtonian orbits (2.52) in the presence of curved and
twisted gravitation.

2.4.2 Basic Elements for Calculus of Variations

We give some basic ingredients for deriving the Euler–Lagrange equations by
starting with the invariance under change of coordinate system. The previous
subsection is extended by considering an arbitrary Lagrangian function on a
manifold M . Let first consider a curve C of M , assumed to be a class C2, which is
represented parametrically by:

C : t ∈ R
∗ → xα(t) ∈M (2.53)

where t is a parameter, not necessarily the time variable, and xα is a point of the
manifold (Fig. 2.19). The derivative of the coordinate with respect to t is denoted
ẋα. Say a Lagrangian function L (t, xα, ẋα) of 2n + 1 independent variables of
class C2. We assume that the curve C is delimited by two points xα(t1) and
xα(t2) respectively defined by A and B on the figure. The action associated to this
Lagrangian function on the curve C is defined as the integral:

S :=
∫ t2

t1

L
(
t, xα(t), ẋα(t)

)
dt (2.54)

Fig. 2.19 Configuration space of the Lagrangian for a discrete system with coordinates (xα, α =
1, · · · , n). The two extremities A and B of the curve C are the initial and the final points, the curve
lying on the manifold represented by the surface. At the current point M the virtual displacement
(virtual velocity) δM has the components δxα . The real motion is represented by the plain line
curve C and the virtual trajectory is represented by the dotted curve
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Consider now the coordinate transformations yi = yi(xα) which does not affect
the parameter t . The elementary definition of the covariance is that the Lagrangian
function is conserved under an arbitrary coordinate transformations (it is also
called diffeomorphism invariance since the coordinate transformations constitute
a diffeomorphism). The goal of this subsection is to recover the standard Euler–
Lagrange equations associated to this Lagrange function by means of covariance.

The invariance of the action under the coordinate transformation stipulates that
the Lagrangian function L is a scalar. By denoting that the Lagrangian function in
terms of the coordinates yi is L , the covariance of the action is satisfied if:

L
(
t, yi, ẏi

)
= L

(
t, xα(yi), ẋα(yi, ẏi )

)
(2.55)

and this invariance should be verified for all values of (yi, ẏi ). To obtain the
invariance condition, we have thus to differentiate this relation of invariance with
respect to yi and ẏi respectively. For the sake of the clarity, we have to do some
preliminary calculus. The inverse of the coordinate transformations allows us to
derive the following relationships:

xα = xα(yi), ẋα = J αi (yi) ẏi = ẋα
(
yi, ẏi

)
(2.56)

From these equations, we obtain:

∂ẋα

∂ẏi
= J αi ,

∂ẋα

∂yi
= J αij ẏj (2.57)

Differentiation of the Lagrangian function L with respect to yi and ẏi gives:

∂L

∂yi
= J αi

∂L

∂xα
+ J αij

∂L

∂ẋα
ẏj ,

∂L

∂ẏi
= J αi

∂L

∂ẋα
(2.58)

assessing that the derivatives ∂L /∂ẏi are the components of a covariant vector
whereas the derivatives ∂L /∂yi are not. Owing that the partial derivative of
a scalar function is by definition the covariant derivative, care should be taken
by observing that here the dependence of the Lagrangian on the derivative ẋα

introduces difficulties. Variables are in fact not independent. The construction of
a covariant vector associated to the derivative ∂L /∂xα is done by eliminating the
right-hand-side term of the first equation of the system (2.58). For this purpose, total
differentiation of the second equation of (2.58) with respect to the parameter t e.g.
Lovelock and Rund (1975) gives:

d

dt

(
∂L

∂ẏi

)

= J αi
d

dt

(
∂L

∂ẋα

)
+ J αij

∂L

∂ẋα
ẋj (2.59)
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Therefore, we deduce the covariance requirement of the Lagrangian function

d

dt

(
∂L

∂ẏi

)

− ∂L
∂yi

= J αi
[
d

dt

(
∂L

∂ẋα

)
− ∂L
∂xα

]
(2.60)

The covariant vector:

Eα := d

dt

(
∂L

∂ẋα

)
− ∂L
∂xα

(2.61)

is interpreted as the Lagrangian derivative (or generalized gradient) of the
Lagrangian function L . Let now consider the action S and we assume that it
is stationary with respect to the evolution of the parameter t . Then its variation
holds:

δS = δ
∫ t2

t1

L
(
t, xα(t), ẋα(t)

)
dt = 0 (2.62)

with the additional assumptions that the two extremities are fixed, say δxα(t1) = 0
and δxα(t2) = 0. Straightforward calculus using integration by parts leads to the
classical equation:

δS = δ
∫ t2

t1

[
d

dt

(
∂L

∂ẋα

)
− ∂L
∂xα

]
δxα dt = 0 (2.63)

Owing that coordinates xα are independent, the conditions of stationarity of the
action are the so-called Euler–Lagrange equations:

Eα = 0, α = 1, n (2.64)

and these equations are covariant. In the following we extend this concept to obtain
the Euler–Lagrange equations associated to a Lagrangian function

2.4.3 Extended Euler–Lagrange Equations

We remind the concept of Lagrangian functions and its invariance, which is a com-
mon tool for both relativistic gravity e.g. Kibble (1961), strain gradient continuum
e.g. Lazar and Anastassiadis (2008), and more generally most of physics theory. We
first give a preliminary definition of a Lagrangian function e.g. Lovelock and Rund
(1975) and the notation δ here corresponds to what we will call Lagrangian variation
in the second part of the work.
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Definition 2.24 Consider an open subset M ⊂ Rn, and a scalar (real) function
on M depending on coordinates, (xμ,μ = 0, n − 1), and on the set of m scalar
functionsΦi, i = 1,m with their derivatives:

L
(
xμ,Φi(xμ),Φiμ1

(xμ), · · · ,Φiμ1···μk (x
μ)
)

(2.65)

where:

Φiμ1
(xμ) := ∂μ1Φ

i(xμ), · · · ,Φiμ1···μk (x
μ) := ∂μ1 · · · ∂μkΦi(xμ) (2.66)

L is called Lagrangian function of order k, and:

Σ
μ1···μk
i := ∂L /∂Φiμ1···μk (2.67)

are the Lagrangian momenta (or currents).

As arguments of the Lagrangian function, metric components gαβ and coefficients
connection Γ γαβ play the role of Φi in the scope of relativistic gravitation theory.
The diffeomorphism invariance is required for both the gravity Lagrangian density
LG and the matter Lagrangian density LM . Both of them may be submitted to the
following transformations e.g. Capoziello and de Laurentis (2011), Obukhov and
Puetzfeld (2014):

{
xμ → x̃μ = x̃μ(xα)
Φi → Φ̃i := Φi + δΦi (2.68)

Variation δxμ := x̃μ − xμ of the domain M is called external variation (pictured
as arbitrary small transformations of the spacetime coordinates), whereas variation
of fields δΦi are called internal or substantial (arbitrary small variation of matter
fields such as the metric, the torsion, and the curvature tensor fields). In view of
deriving equations from covariance and gauge invariance, it is important to consider
a worth set of variables. For instance considering the set of metric and connection
may induce some interpretation errors, as we will see later, whereas considering
metric and torsion, and curvature is worth (conforming to covariance requirement).
Considering the displacement and the connection is worth. Some mistakes might
appear when wrong set of variables is chosen.

We consider a generic Lagrangian L hereafter. The change of Lagrangian due
to these two transformations is given by:

L (x̃μ, Φ̃i , Φ̃iμ1
, · · · , Φ̃iμ1···μk ) = L (xμ,Φi,Φiμ1

, · · · ,Φiμ1···μk ) (2.69)

+ ∂L

∂xμ
(xμ,Φi,Φiμ1

, · · · ,Φiμ1···μk )δx
μ (2.70)
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+ . . .

+ ∂L

∂Φiμ1···μk
(xμ,Φi,Φiμ1

, · · · ,Φiμ1···μk )δΦ
i
μ1···μk
(2.71)

The Lagrangian must satisfy three conditions: (a) the same shape of the
function should be retained independently on the coordinate system (covariance)
e.g. Antonio and Rakotomanana (2011); (b) the Lagrangian should satisfy the gauge
invariance under the group of Lorentz transformations (which is an extension of
the Galilean invariance) e.g. Kibble (1961), and (c) the gauge invariance of the
Lagrangian with respect to active diffeomorphisms applied on fields. We deduce
respectively:

1. The covariance requirement of the Lagrangian should be satisfied, since physical
contents do not depend on the choice of coordinate system,

L (x̃μ, Φ̃i , Φ̃iμ1
, · · · , Φ̃iμ1,···μk ) = L (xμ,Φi,Φiμ1

, · · · ,Φiμ1···μk ) (2.72)

The shape of the Lagrange remains the same after change of coordinate system.
2. The gauge invariance with respect to the existence of a (locally) homogeneous

ambient Minkowskian spacetime induces:

∂L

∂xμ

(
xμ,Φi,Φiμ1

, · · · ,Φiμ1···μk
)
δxμ = 0, ∀δxμ (2.73)

stating that Lagrangian cannot depend explicitly on the coordinate xμ e.g.
Capoziello and de Laurentis (2011). This is called (local) translation invariance
in Kibble (1961), Lovelock and Rund (1975). Partial derivatives mean that all
physics fields and their derivatives are held constant.

3. The gauge invariance with respect to active diffeomorphisms (variations of the
fields) then gives e.g. Pons (2011) :

∂L

∂Φi

(
xμ,Φi,Φiμ1

, · · · ,Φiμ1···μk
)
δΦi

+ ∂L

∂Φiμ1

(
xμ,Φi,Φiμ1

, · · · ,Φiμ1···μk
)
δΦiμ1

+ . . .
+ ∂L

∂Φiμ1,···μk

(
xμ,Φi,Φiμ1

, · · · ,Φiμ1···μk
)
δΦiμ1,···μk = 0, ∀δΦi

for any independent variations of the fields (but not their derivatives). After
integrating by parts and worthily transferring boundary terms at ∂M , we obtain
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classically the Euler–Lagrange equation (arguments are omitted for the sake of
simplicity) e.g. Pons (2011), Sharma and Ganti (2005):

∂L

∂Φi
− ∂

∂xμ1

(
∂L

∂Φiμ1

)

+ ∂2

∂xμ1∂xμ2

(
∂L

∂Φiμ1μ2

)

± . . . ≡ 0 (2.74)

From now and hereafter, the Lagrangian is assumed to depend not on the
coordinates xμ explicitly (conforming to the Kibble result Kibble 1961; Lovelock
and Rund 1975) and we only consider geometric variables as fields. Typically,
the variations of the domain, or the variations of the fields include the fol-
lowing terms (ξα, ξαβ x

β, ∂αΦ
i
μ1···μnξ

α), where ξα , and ξαβ are the variations of
vector and tensor fields (gauge) e.g. Pons (2011). As we will see later, the
gauge variations ξαβ imply the symmetry of hypermomenta Σμ1···μn

i , whereas

the partial derivatives ∂αΦiμ1···μnξ
α are related to the local conservation laws.

In this work, central focus is on mechanics of gradient continuum and on rel-
ativistic gravitation where the physical variables for matter are matter metric
and matter connection in addition to spacetime metric and spacetime connec-
tion.

Before embarking into details, as we will see in the second part of this
work, it is worth to distinguish various kinds of variations when dealing with a
continuum matter in motion in a continuum spacetime e.g. Carter and Quintana
(1977). A Lagrangian variation of a tensor field ΔT is a comoving variation of
this quantity with the material point (small) displacement ξ . The Euler variation
δT is the variation of a tensor field is the variation of this quantity at a fixed
point in the spacetime. We will see that the Lie derivative (cf. Appendix A.3)
of this tensor field along the vector field ξ defines the difference between the
Lagrangian variation and the corresponding Eulerian variation ΔT = δT +
LξT.

The variational procedure, that is reminded in this chapter, does not explicitly
mention the torsion and curvature variation. In a general manner, the previous tensor
T may be an arbitrary tensor namely metric, torsion and curvature. Interestingly, in
the next chapters, torsion and curvature tensors constitute part of the geometrical
background of the continuum (or spacetime) and then constitute in any case
some “hidden” arguments of Lagrangian. L . In the next chapters, we will show
for instance that an action involving only metric and curvature can generate
conservations equations containing torsion variable as in e.g. Futhazar et al. (2014),
Kleinert (2000), Noll (1967), Rakotomanana (1997). This is essentially due to the
presence of torsion as intrinsic part of the connection.
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2.5 Simple Examples in Continuum and Relativistic
Mechanics

2.5.1 Particles in a Minkowski Spacetime

Let use temporarily the coordinates (x0 := t, x1, x2, x3) to highlight the importance
of the light speed in relativistic theory. Minkowskian spacetime is a Lorentzian
manifold endowed with a metric ĝαβ := diag{c2,−1,−1,−1} at every point P
allowing to define arc length ds2 := gαβdx

αdxβ = c2dt2 − dx2 − dy2 − dz2.
Let xμ := (x0, x1, x2, x3) be the coordinates of a mass point evolving within a
Minkowskian spacetime. The path of this mass point is called worldline and defined
as xμ := (x0(t), x1(t), x2(t), x3(t)) where x0 := t is a time parameter. The four-
vector tangent to this worldline is a tangent vector of the manifold:

dxμ

dt
=
(
v0 := dx0

dt
= 1, vi := dxi

dt

)
, i = 1, 2, 3 (2.75)

Remark that vi are components of three-dimensional vector, but (vμ) do not
behave like a four dimensional vector. In the four dimensional spacetime, we
can not use this definition because the time t is not invariant under Lorentz
transformations (2.14), as we will check below. Indeed, the first principle of special
relativity theory imposes that the velocity of any particle within the space is lower
than the light speed then c2 > (v1)2 + (v2)2 + (v3)2. To overcome the difficulty of
time invariance, we use the concept of proper time τ as independent variable.

Definition 2.25 (Proper Time) We call the proper time parameter τ such that
dτ 2 := ds2/c2. This gives, where γ is called the Lorentz factor,

dτ :=
√

1− (v2/c2)dt, γ :=
(

1− (v2/c2)
)−1/2

(2.76)

In the particle’s own rest frame, such that dxi = 0, the proper time τ coincides on
t . Physically, the proper time τ is merely the measure of the recorded time on the
particle own’s clock.

Definition 2.26 (Four-Vector, Number-Flux Four-Vector) The 4-velocity vector
uμ in the special relativity theory is defined as:

uμ :=
(
u0 := dx0

dτ
, ui := dxi

dτ

)
= γ

(
1, vi

)
, i = 1, 2, 3 (2.77)

where we check that gαβuαuβ = γ 2(c2 − v2) = c2. The number-flux four-vector is
defined as, n is the number density of particles in the rest frame,

nμ := n uμ (2.78)
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In Galilean physics, the number density is a scalar with is the same independently
on the reference frames whereas the three-dimensional flux nvi is frame-dependent
since velocities are frame-dependent. The number-flux four-vector nuμ is a frame-
independent four-vector. The previous relations allow us to deduce that g(u,u) =
n2c2. If we adopt the coordinate system xμ = (x0 := ct, xi), the result would
be g(u,u) = n2. For completeness, the momentum of a mass point is equal to
p := γ m0v, where the “static mass” m0 (rest mass) is multiplied by the factor γ .
Therefore, the necessary work for accelerating the point from rest to a 3-velocity v
is: T = m0c

2[1− (v/c)2]−1/2 −m0c
2 = (γ − 1) m0c

2, because the material point
at rest must have energy content equivalent to m0c

2. The Lagrangian function of a
material point in a relativistic free fall state is defined as, following the original idea
of Einstein about electron motion,

L := T = (γ − 1) m0c
2 (2.79)

For sufficiently low speed, the previous expended work (which equals to the kinetic
energy) reduces to: T = (γ − 1) m0c

2 � (1/2)m0v
2 + (3/8)m0v

4/c2 + · · · .

2.5.2 Some Continua Examples

2.5.2.1 Energy-Momentum Tensor

In the following, we give some basic elements to build the energy-momentum tensor
by considering a matter action SM := ∫

M LM

(
gαβ, ∂γ gαβ, · · · ; uα, · · ·

)
ωn,

where the arguments of the matter Lagrangian LM may include metric and its
partial derivatives, four-velocity (for dust) and other physical variables if necessary.
It should be however noticed that the presence of partial derivatives of the metric as
arguments of the matter Lagrangian induces some misunderstandings and requires
to go further to the concept of covariance. Starting with Eq. (4.98), the variation of
the Einstein–Hilbert action gives:

δSM =
∫

M
δ
(
LM

√
Detg

)
dx0 ∧ · · · dx3 =

∫

M

(
∂LM

∂gαβ
− LM

2
gαβ

)
δgαβ ωn

where the presence of the metric g in the integrand is essential. The boundary
conditions terms are (voluntarily) omitted for the sake of the clarity. At this stage,
we recall the definition of the stress-energy momentum e.g. Carter and Quintana
(1977), Pons (2011):

Tαβ := ∂LM

∂gαβ
− LM

2
gαβ (2.80)
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The second term of the stress-energy Tαβ appears because of the choice of a
Lagrangian scalar density rather than the scalar Lagrangian. Indeed, if we express
the derivative by means of the scalar Lagrangian, the following relation holds:

√
Detg Tαβ := 2

∂
(√

DetgLM

)

∂gαβ
(2.81)

Relations (2.80) and (2.81) define the same stress-energy tensor. This second
relation could be naively deduced from the variation equation

√
Detg Tαβ δgαβ :=

δ
(√

Detg LM

)
meaning that the stress-energy tensor is obtained from the variation

of the scalar Lagrangian.
Einstein equations for relativistic matter fields (derived in its extended form in

the second part of this paper) take the form of: �αβ − (1/2) Rgαβ = χ Tαβ , where
Tαβ is the energy-momentum tensor characterizing the matter (we include it into
the Lagrangian hereafter). Multiplying this equation with gμν allows us to derive:
�αβ = χ

[
Tαβ − (1/2) T gαβ

]
with, T := gαβ Tαβ ; This allows us to obtain the

field equations for special relativity at the lowest order in ε, and by taking the first
dominant order in 2εαβ := gαβ − ĝαβ we have gravitational equation:

χ
[
Tαβ − (T /2)gαβ

] = ĝλσ (∂μ∂αεσβ − ∂μ∂βεσα + ∂σ ∂βεμα − ∂σ ∂αεμβ
)

(2.82)

where the constitutive formulations Tαβ(ĝμν, εμν, ∂λ∂γ εμν) highlight the problem
of including metric and its derivatives as arguments of the Lagrangian. It is via
the dependence of matter Lagrangian on the metric gμν that we can derive the
matter mass-energy-momentum tensor field Tαβ e.g. Dixon (1975), Lehmkuhl
(2011), Maugin (1978), Williams (1989). Result based on the Lagrangian depen-
dence only on curvature and on metric was shown in e.g. Lovelock (1971)
for Riemannian manifold and its extension constitutes a main expectation in
this paper. Another research direction was developed with metric-affine theory
where metric and affine connection, and their derivatives were given a priori
as independent arguments of Lagrangian (Palatini method). The basic idea is to
consider multivalued mappings e.g. Kleinert (2008) to merge to the Palatini–
Einstein method, where the Lagrangian takes the form of L (gαβ, Γ

γ
λμ, ∂νΓ

γ
λμ),

depending on connection coefficients and their partial derivatives. Conversely to
original relativistic gravitation theory, curvature is here associated to connection
and its partial derivatives e.g. Exirifard and Sheikh-Jabbari (2008), Forger and
Römer (2004), Lovelock and Rund (1975). In the present paper, we are interested
in invariance of both matter Lagrangian and spacetime Lagrangian (covariance and
gauge invariance).

Some examples of Lagrangian function of basic material models are given in this
subsection. More detailed development will be conducted in following chapters.
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2.5.2.2 Dust in Relativistic Mechanics

It is also known that not every material system can be given a Lagrangian
formulation, and sometimes there are materials for which Lagrangian does not
explicitly depend on the metric tensor. Such is the case for a model of incoherent
matter called “dust” whose particles do not interact. In special relativity, from a
slightly different point of view (following a dust-matter along a worldline) the action
of a free dust-matter is defined as S := −m0c

2
∫ τ2
τ1
dτ , where τ is the proper time

of the particle. This induces:

S = −m0c

∫ s2

s1

ds = −m0c

∫ s2

s1

√
ĝμνdxμdxν = −

∫ τ2

τ1

m0c

√
ĝμνuμuν dτ

(2.83)

In general relativity, the Minkowskian metric is merely replaced by a dynamic
metric gμν to give:

S = −
∫ τ2

τ1

m0c
√
gμνuμuν dτ (2.84)

which gives exactly the dust-matter action Eq. (2.85). Such is the case when the
matter Lagrangian is assumed to depend explicitly on the metric. The associated
energy-momentum tensor is defined as Tαβ := ρuαuβ where ρ is the proper density
of matter and uα its the four-velocity field e.g. Dirac (1974). To derive the variational
formulation, let first consider the relativistic (Hamiltonian) action for a single dust-
matter associated to Lagrangian L :

S :=
∫ τ2

τ1

(γ − 1) m0c
2 dτ =

∫ t2

t1

(1− 1/γ ) m0c
2 dt → S

:= −
∫ t2

t1

m0c
2
√

1− (v/c)2 dt

by dropping the rest energy m0c
2 which is constant with respect to t . Then we can

write:

S := −
∫ t2

t1

m0c
√
c2 − v2 dt = −

∫ τ2

τ1

m0c
√
gμνuμuν dτ (2.85)

by using the relation between Eqs. (2.75) and (2.77), and owing that (Fig. 2.20):

√
c2 − v2 = (1/γ )√gμνuμuν and dτ = dt/γ
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Fig. 2.20 Local motion of a dust matter P . A is the past position, P the present position, and B
its future in the spacetime continuum M . (Left) in relativity, and (right) in Newtonian physics.
For relativity, it is asserted that there exists an intrinsic time-order only for events occurring on the
worldline APB for an observer, the dust particle. The present {P } is a three-dimensional space
in Newtonian physics. This means that the Newtonian physics asserts that there is an intrinsic
time-order for arbitrary pair of events, due to the assumption of an absolute time with any event

By extension, the action for relativistic dust is thus given by the integral of all
dust-matter by replacing numberm := ρωn e.g. Dirac (1974)3:

S := −
∫

M
ρ c
√
uαuα ωn, ωn :=

√
Detg dx0 ∧ dx1 ∧ dx2 ∧ dx3 (2.86)

where we observe in fact an implicit dependence on the metric tensor g for either
the norm uαu

α := gαβu
αuβ or in the term “Det g” we will introduce soon after.

By a standard variation in the framework of general relativity it is straightforward
to deduce that Tαβ = ρ uαuβ . Indeed, we can derive the variation of this action as
(Dirac 1974):

δS = −1

2

∫

M
ρ uαuβ δg

αβ ωn

For particular case, it is suggested to define the constant χ := 8πG/c4. Combining
the gravitation field and the dust, we arrive at the Dirac action for relativistic dust:

S :=
∫ (

c4

16πG
R− ρ c√uαuα

)
ωn (2.87)

A dust is a typical example of a test-particle whose dimension is very small
compared to that of all other moving bodies within the spacetime. The gravitational
field induced by dust is therefore neglected, and the curvature R is considered as
solely due to an “external field”.

3In relativistic mechanics, dust is usually defined as a set of particles forming a perfect fluid with
zero pressure and with no interaction between them. Particles move independently each other.
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2.5.2.3 Perfect Fluids in Relativistic Mechanics

In relativistic mechanics, a perfect fluid is a fluid that has no viscosity and no
heat conduction e.g. Minazzoli and Karko (2012). In the same way, the stress-
energy tensor for perfect fluid is given by: Tαβ := (ρ + p)uαuβ + p gαβ . Same
comments as for dust could be applied. Indeed, perfect fluid is defined as continuum
in which all forces against slipping are zero. The only force between neighboring
fluid element is pressure (normal component of stress tensor). This model extends
the ideal gas of classical thermodynamics. It extends the concept of dust matter by
adding pressure interaction. A recent example of barotropic perfect fluid is given in
e.g. Minazzoli and Karko (2012) where the action of the fluid within a gravitational
field is given by:

S :=
∫

B

[
c4

16πG
R− ρ

(
c2 +

∫
P(ρ)

ρ2
dρ

)]
ωn (2.88)

where ρ is the energy density of the fluid (the rest energy is the number particles of
fluid per unit volume in the mean frame of the reference of these particles), P(ρ)
the pressure, and c the light speed. The corresponding stress-energy tensor can be
derived by variation to give:

T αβ = −
{
ρ
[
c2 +Π(ρ)

]
+ P(ρ)

}
uαuβ + P(ρ)gαβ

which leads to the field equation:

�αβ − (1/2)R gαβ = −
{
ρ
[
c2 +Π(ρ)

]
+ P(ρ)

}
uαuβ + P(ρ)gαβ (2.89)

In relations defining the Lagrangian function of the dust (2.87) and the perfect
fluids (2.88) the scalar curvature is calculated with its classical components (4.98)
in the framework of Einstein relativistic gravitation.

2.5.2.4 Strain Gradient Continuum

For 3D elastic continuum (in this paragraph Greek indices run for (1, 2, 3)), it
is usual to take a sufficiently smooth mapping so that xi := xi(Xα) and its
inverse Xα := Xα(xi) have at least smooth second derivatives. Associated to these
coordinates, we define the deformation gradient (tangent linear application) F iα :=
∂xi/∂Xα and metric components gαβ := F iαF jβ ĝij . This relation, showing that the
material metric is induced by the spacetime metric, means that the matter is coupled
with the spacetime e.g. Lehmkuhl (2011), Verçyn (1990). Motions of classical
continuum preserve topology of bodies. Mathematical models deduced from these
assumptions do not depend on scale lengths. In early 1960s, the interest for gradient
continuum grew due to the need of accounting for small scale dependence of
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material response. Toupin developed elastic continuum models with couple-stress
(Toupin 1962) and observed that some components of the gradient of strain were
not accounted for. Later he pointed out the correspondence of strain gradient elastic
models and discrete lattice models of solids with nevertheless some flaws when
considering centro-symmetric materials. In 1964, Mindlin proposed an enhanced
generalized elasticity theory to describe elastic material with microstructure effects
by adding the strain gradient as additional variables (Mindlin 1964). To overcome
the centro-symmetric problem, Mindlin (1965) have proposed a strain gradient
theory in which the strain energy function is assumed to depend on both strain,
strain gradient, and second gradient of strain LM(εij , ∂kεij , ∂l∂kεij ) where ε is the
strain tensor. Owing that gαβ := ĝαβ + 2εαβ = ĝαβ + ∂αuβ + ∂βuα + ∂αuγ ∂βuγ ,
Lagrangian may be formulated as function of derivatives of displacement field
uα, say L (∂αuβ, ∂λ∂αuβ, ∂μ∂λ∂αuβ) e.g. Agiasofitou and Lazar (2009). For
example, the most known model of gradient elastic continuum is defined by Mindlin
Lagrangian function as L := LG −LM with:

LM = (λ/2) εααεββ + μ εαβεαβ + a1 ∂αεαγ ∂γ εββ + a2 ∂αεββ ∂αεγ γ

+ a3 ∂αεαγ ∂βεβγ + a4 ∂αεβγ ∂αεβγ + a5 ∂αεβγ ∂γ εαβ (2.90)

LG = (ρ/2) ∂0uα ∂0uα + (ρ/2)�2
G ∂0∂βuα ∂0∂βuα

where λ and μ are the usual Lamé parameters and the various ai are addi-
tional elastic constitutive constants e.g. Mindlin (1964). Here uα stands for the
three-dimensional displacement components rather than for four-vector velocity in
relativistic mechanics. The additional (higher order) term of inertia in LG captures
the time derivative of the displacement gradient e.g. Polizzotto (2012). If only the
skew symmetric part of the displacement gradient is retained then this is similar
to the rotational inertia for Timoshenko beam e.g. Bideau et al. (2011) which is a
particular Cosserat continuum model. x0 := t stands for time, and ρ and �G are
respectively the matter density and a characteristic lengthscale. On the one hand,
derivatives of the matter Lagrangian LM with respect to the strain εαβ and its
partial derivatives ∂γ εαβ allow us to obtain the matter constitutive laws (it should be
stressed that in such operation the strain and its derivatives are independent on the
displacement and its derivatives in L ). On the other hand, the gauge invariance of
the entire Lagrangian L gives the conservations laws provided that the components
of strain εαβ and its derivatives are expressed in terms of the displacement uα. A
simple illustration of L (2.90) is given by the Lagrangian density of an elastic
beam with line density ρ, Young’s modulus E (Poisson ratio ν ≡ 0), moving in an
Newtonian spacetime,

L = (1/2)ρ (∂tu)2 + (1/2)ρ �2
G (∂x∂tu)

2 − (1/2)E
[
(∂xu)

2 + �2
M (∂x∂xu)

2
]

where u(x, t) is the axial displacement along the beam of each point x, and with
another lengthscale parameter for the matter �M := 2(a1 + a2 + a3 + a4 + a5)/E
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e.g. Mindlin (1964), Polyzos and Fotiadis (2012). For completeness, conservation
laws associated to this Lagrangian hold e.g. Challamel et al. (2009):

∂x∂x

(
u− �2

M ∂x∂xu
)
= (1/c2)∂t ∂t

(
u− �2

G ∂x∂xu
)
, c2 := E/ρ

The nonlocality of this model includes both the strain gradient effect and the
Eringen’s integral effect. This is a typical form of kinetic and strain energy
density proposed in e.g. Askes and Aifantis (2011) where review of recent models,
deduced from Mindlin Lagrangian, has been done in statics and dynamics. See e.g.
Polizzotto (2012) for discussion about problems arising from boundary conditions
combined with higher order inertia terms. Gradient theories of elastic continuum
mechanics are nowadays used to address various problems in which the effects of the
inhomogeneities of matter cannot be disregarded. In the 1960s e.g. Mindlin (1965),
Mindlin (1964), as well as in quite recent literature and/or reviews e.g. Askes and
Aifantis (2011), Cordero et al. (2016), Javili et al. (2013), these gradient theories
assume strain and gradient of strain and even higher gradients as primal variables
for establishing constitutive laws. In a general manner, Lagrangian (2.90) defines
second/third grade continuum models, and its covariance constitutes one of the issue
we would like to address in this book.

For the sake of the clarity, the classical approach for strain gradient continuum,
namely the strain gradient elastic model, may be slightly modified as follows.
First, the arguments of the strain energy density function are considered U =
U (F iα, F

γ ∂αF
i
β, · · · ) where the argument F iα may be replaced easily by gαβ :=

F iαF
j
β ĝij for invariance requirements. The second argument Γ γαβ := Fγ ∂αF

i
β is

preferred to ∂αF iβ . It should be stressed that it does not any utilization restriction

since the tetrads F iβ cannot be singular. Higher derivatives of the connection may be
also suggested as arguments of the energy U , or more generally the Lagrangian
L , to define higher gradient elastic models. The next chapter is devoted to the
covariance of Lagrangian under an arbitrary diffeomorphism (change of coordinate
system).



Chapter 3
Covariance of Lagrangian Density
Function

3.1 Introduction

During the last two centuries, the concept of absolute spacetime has been extended
in two main directions, and accordingly the definition of a continuum has following
more or less these evolutions. Galilean physics, and namely the Newton mechanics,
is mainly based on the existence of an absolute rigid space and time. For both special
and general relativistic physics, Einstein and numerous other authors which were
involved in, revised the concept of space and time into spacetime by relativizing the
time (Minkowski spacetime) and by transforming of absolute and rigid space into a
variable and dynamical four-metric to model the interaction of Einstein spacetime
and matter. Further extension of the relativistic continuum physics was obtained
when Cartan added the torsion as dynamical variable to obtain the Einstein–Cartan
spacetime. More generally, the basic geometry underlying any physics theory may
thus be proposed to include metric and affine connection, not necessarily associated
to metric (metric affine-manifold). Lagrangian we are interested in are function
defined on such a manifold.

This chapter is devoted to the so-called “axiom of general invariance of Hilbert”
e.g. Brading and Ryckman (2008). In 1905, Hilbert proposed two axioms for
setting the basis for the covariant derivation of both relativistic gravitation and
electromagnetism. The two axioms were proposed as follows:

1. (Mie axiom on Lagrangian) The Lagrangian densityL depends on the spacetime
metric gμν (10 components), their first and second derivatives, and the electro-
magnetic potential Aμ (4 components) and their first derivatives;

2. (Covariance) The Lagrangian function L is an invariant with respect to arbitrary
transformations of the point-event coordinates xμ.

The present chapter deals with the second Hilbert’s axiom. For historical context,
we remind the Cartan theorem. Let B a four dimensional manifold endowed with a
metric tensor gαβ (xν). Assume that the manifold is orientable with a volume-form
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ωn(x
ν). It is worth to remind the theorem of Cauchy (1850)–Weyl (1939) stating

that for any scalar-valued function L with vector arguments eα := F iα êi , α = 1, n,
elements of the tangent space TxM , the Lagrangian function L is invariant under
the rotation group O+ if and only if it exists a representation of the function L̃
such that: L = L̃

(
gαβ, det(gαβ)

)
. Proof may be found in e.g. Rakotomanana

(2003) (annex E). This allows us to assume a priori the metric components as
arguments of the Lagrangian density of the action: S := ∫

B L ωn, where L
depends on the fields and their derivatives (of finite order), and ωn a volume-
form on B. Let consider spacetime transformations. Passive diffeomorphism views
transformations acting on the coordinates leaving the fields unchanged (covariance),
whereas active diffeomorphisms assume transformations to act on fields and leave
the coordinates unchanged (gauge invariance) Anderson (1971). We first consider
passive diffeomorphisms by studying in the following section the invariance of
Lagrangian function L under the group of diffeomorphisms Diff(B). Three
theorems are particularly involved for the covariance analysis.

3.2 Some Basic Theorems

We report here three theorems that are useful to the derivation of the Lagrangian
covariance: Cartan’s theorem in the framework of relativistic gravitation, Lovelock’s
theorem extending the Cartan’s theorem to nonlinear Lagrangian in the framework
of Riemann geometry, and the Quotient theorem necessary for establishing the main
result of this chapter.

3.2.1 Theorem of Cartan

After the introduction of Minkowski spacetime, the second major modification of
the spacetime is the recognizing that the gravity is not an a priori existing force
field but the acceptation that is an aspect of geometry which is captured by the
metric and by the affine connection. Derivation of the gravitation equations consists
in searching for 2-covariant tensor Tαβ with the conditions: first, Tαβ is linear with
respect to the second derivatives of the metric components; and second, the tensor
should be divergence free for satisfying the conservation laws. In 1922, Cartan
derived the Einstein’s equations of gravity on affinely connected manifold. He
showed in Cartan (1922) the uniqueness of the Einstein tensor “Gαβ := �αβ −
(1/2)R gαβ” assessing the necessary (and sufficient) condition to use Einstein’s
equations of gravity within usual assumptions.

Theorem 3.1 (Cartan (1922)) Let tensor Tαβ
(
gαβ, ∂γ gαβ, ∂λ∂γ gαβ

)
to be linear

with respect to the second derivatives of gαβ and diffeomorphism invariant in
the sense that it has a form invariant with respect to all diffeomorphisms of the
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manifold—change of coordinates yμ = yμ (xν). Then the unique solution takes the
form of:

Tαβ = a �αβ + b R gαβ + c gαβ (3.1)

where �αβ and R are the Ricci and the scalar curvatures respectively. a, and b are
real arbitrary constants and c are scalar field.

Proof See Cartan (1922). ��
The theorem of Cartan shows that at any point P of a pseudo-Riemannian (and
Lorentzian) manifold M , it is possible to find a coordinate system (xμ) such that
the metric tensor writes gαβ and the first derivatives of the components ∂γ gαβ ,
with respect to the chosen coordinates, are zero. However, certain combinations of
second-order derivatives ∂λ∂γ gαβ which from the Riemann curvature �γαβλ cannot
be eliminated. This is a fundamental result in gravitation theory and constitutes the
mathematical basis for gravitation equations χ Tαβ := �αβ− (1/2)R gαβ+Λ gαβ ,
where χ := 8πG/c4 is the cosmological constant introduced to be compatible with
the universe expansion according to the finding of Hubble in 1929. G � 6.67 ×
10−28[m3 kg−1 s−2] and c � 3 × 108[ms−1] are the gravity constant and the light
velocity respectively. Cartan theorem states that at every point of the four dimen-
sional Riemannian manifold (spacetime), among the 100 second derivatives of the
metric ∂λ∂γ gαβ , the invariance with respect to passive diffeomorphisms allows us
to eliminate 80 of them to retain only 20, corresponding to the components of
curvature�γαβλ. Cartan theorem was extended in the seventies by using a scalar field
rather than a 2-covariant tensor (Lovelock and Rund 1975). Since then numerous
geometrized theories of gravitation including nonlinear dependence on curvature
have been proposed, called fourth-order gravitation theory. For short, they were
mainly introduced to prevent the bing bang singularity in relativistic gravitation, to
account for the inflationary cosmological model, and most interestingly to attempt
to unify gravitation and quantization of matter fields e.g. Schimdt (2007). Cartan
theorem can be applied both to the relativistic gravity theory and to the strain
gradient continuum theory. Following the idea of Cartan, Anderson provided the
structure of divergence-free contravariant (2, 0) type tensor (Anderson 1978). In
this paper, the separation of the influence of the metric components and their second
partial derivatives was shown. Different steps of proof are analogous to that of
Lovelock and Rund and details may be found in Antonio and Rakotomanana (2011).

3.2.2 Theorem of Lovelock (1969)

Consider a set of variablesΦi(xμ). Let assume that the Lagrangian is function of the
Φi(xμ) and their first and second derivatives with respect to xμ. Metric components
gαβ(x

μ) play the role of Φi(xμ) in the gravitation theory. The associated Euler–
Lagrange equations are expected to be of fourth-order as we previously show.
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However, in the general theory of relativity, the Einstein equations of gravitation are
of second-order in terms of metric components. Lovelock investigated the case of
Lagrange density which is a function of the metric and its first and second derivatives
with respect to xμ. The following theorem was shown in Lovelock (1969).

Theorem 3.2 Let M a four-dimensional torsionless manifold endowed with a
metric gαβ , and a metric compatible affine connection Γ γαβ with a curvature �γαβλ.
The only second order Euler–Lagrange equations which can arise from a scalar
density L (gαβ, ∂γ gαβ, ∂λ∂γ gαβ) are:

�αβ − (1/2)Rgαβ +Λgαβ = 0 (3.2)

are i.e. the Einstein’s gravitational equations with the cosmological constantΛ.

Theorem of Lovelock constitutes one of the major results on the uniqueness of the
Einstein equations on manifold with a metric tensor with signature (+,−,−,−).
In the same way, motivated by the fact that gravitational field equations should
be second-order equations in terms of metric components, these equations being
obtained from a Lagrangian density L (gαβ, ∂γ gαβ, ∂λ∂γ gαβ), it was also shown
in Anderson (1981) that in a four-dimensional manifold, the Lagrangian density
must take the form of: L = a R + b where a and b are constants. The resulting
Euler–Lagrange equations are deduced and can be re-arranged to be exactly (3.2).
This result is obtained under very general conditions without the assumption that
the Lagrangian is linear in curvature R. In Anderson (1981), Anderson extended
this result to include the interaction of gravitation field and external sources due to
matter immersed in the spacetime M .

3.2.3 Theorem of Quotient

For self consistency, we remind some technical theorems in tensor analysis (Love-
lock and Rund 1975). The most important is the quotient law saying that a set of
real numbers (R) form the components of a tensor of a certain rank, if and only if its
scalar product with another arbitrary tensor is again a tensor (practically, we attempt
to obtain a scalar by a worth choice). This can be used as a criterial test whether a
set of numbers form a tensor or not.

Lemma 3.1 Locally at point P , let the both (n × n) quantities Σij and Σ
ij

then

the both (n × n × n) quantities Σij,k and Σ
ij,k

(the comma “,” doesn’t represent
partial derivative). If, for any symmetric type (0,2) tensor h, for i, j , k = 1, . . . , n,

Σij hij +Σij,khij |k = Σijhij +Σij,khij |k (3.3)

then

(Σij +Σji) = (Σij +Σji) (3.4)
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and

(Σij,k +Σji,k) = (Σij,k +Σji,k) (3.5)

Proof The equality (3.3) being valid for any symmetric tensor h, it is thus valid for
a non null constant tensor (locally). The covariant derivative vanishes and from (3.3)

we have the following equality (Σij )hij = (Σij )hij . The term hij cannot simplify
because of the summation in i and j . For i and j fixed, we choose hij = hji = 1
and the other components null. For i and j range over {1, . . . , n}, we obtain

⎧
⎪⎨

⎪⎩

Σ11 = Σ11

Σ12 +Σ21 = Σ12 +Σ21

Σ13 +Σ31 = Σ13 +Σ31
, · · ·

(3.6)

thus we deduce (3.4). In the same way, locally at point P , a null tensor h with a
non null constant covariant derivative can be chosen too. In such a case from (3.3),
we get (Σij,k)hij |k = (Σij,k)hij |k . The term hij |k cannot simplified because of the
summation in i, j and k. For i, j and k fixed, we choose hij |k = hji|k = 1 and the
other components null. For i, j and k range over {1, . . . , n}, we obtain

{
Σ11,1 = Σ11,1

Σ11,2 = Σ11,2 ,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Σ12,1 +Σ21,1 = Σ12,1 +Σ21,1

Σ12,2 +Σ21,2 = Σ12,2 +Σ21,2

Σ13,1 +Σ31,1 = Σ13,1 +Σ31,1

Σ13,2 +Σ31,2 = Σ31,2 +Σ31,2
, · · ·

(3.7)

thus we obtain (3.5). ��
We have also the version with the partial derivative:

Lemma 3.2 Locally at point P , let the both (n × n) quantities Σij and Σ
ij

then

the both (n × n × n) quantities Σij,k and Σ
ij,k

(the comma “,” doesn’t represent
partial derivative). If, for any symmetric type (0, 2) tensor h, for i, j , k = 1, . . . , n:

Σij hij +Σij,khij,k = Σijhij +Σij,khij,k (3.8)

then

(Σij +Σji) = (Σij +Σji) (3.9)

and

(Σij,k +Σji,k) = (Σij,k +Σji,k) (3.10)

Now the following quotient theorem holds e.g. Lovelock and Rund (1975).
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Theorem 3.3 (Quotient Law) Locally at point P , if the (n × n) quantities Σij

and the (n × n × n) quantities Σij,k (the comma “,” doesn’t represent the partial
derivative) are such that the quantities Σij hij + Σij,khij |k represent a scalar
field for any symmetric type (0,2) tensor h, then the quantities (Σij + Σji) and
(Σij,k +Σji,k) respectively represent the components of a tensor type (2,0) and the
components of a type (3, 0) tensor.

Proof Let define the scalar ψ = Σijhij + Σij,khij |k and ψ = Σαβhαβ +
Σαβ,γ hαβ|γ in the system (yi) and (xα) respectively for any symmetric tensor type
(0,2) h. The equality ψ = ψ becomes

Σij hij +Σij,khij |k = Σαβ AiαAjβ hij +Σαβ,γ AiαAjβAkγ hij |k (3.11)

According to the Lemma 3.1

Σij +Σji = Σαβ AiαAjβ +Σαβ AjαAiβ (3.12)

and

Σij,k +Σji,k = Σαβ,γ AiαAjβAkγ +Σαβ,γ AjαAiβAkγ (3.13)

then a permutation between i and j gives

{
Σij +Σji = (Σαβ +Σβα)AiαAjβ

Σij,k +Σji,k = (Σαβ,γ +Σβα,γ )AiαAjβAkγ
(3.14)

Therefore (Σij + Σji) and (Σij,k + Σji,k) are respectively components of type
(2, 0) tensor and (3, 0) according to the definitions (2.20) and (2.21). ��

3.3 Invariance with Respect to the Metric

Consider a scalar field L depending on the metric components and their partial
derivatives L = L (gij , ∂kgij , ∂l∂kgij ) and L = L (gαβ, ∂γ gαβ, ∂λ∂γ gαβ)
respectively in coordinate system (yi) and (xα). The metric components gαβ(xμ)
(respectively gij (yk) in terms of new coordinates) are the unknown functions.
We consider general covariance by imposing the invariance of Lagrangian shape
under coordinate transformations yi(xα). The corresponding partial derivatives are
denoted

Λij = ∂L

∂gij
, Λij,k = ∂L

∂gij,k
, Λij,kl = ∂L

∂gij,kl
. (3.15)
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They should not be confused with the hypermomenta or currents, which are physical
reactions due to the variations of kinematics, and deduced from the variation of the
Lagrangian function. Care should be taken since relativistic gravitation and gradient
continuum models need hypermomenta and currents to be viable theory e.g. Sotiriou
(2008). Due to the symmetry of g, we have the major properties of symmetry

Λij = Λji, Λij,k = Λji,k, Λij,kl = Λji,kl = Λij,lk . (3.16)

Minor symmetry property Λij,kl = Λkl,ij is also satisfied but they are not used
here. The covariance of L (which is one of the necessary conditions to ensure
the indifference of the constitutive laws with respect to Superimposed Rigid Body
Motions e.g. Betram and Svendsen 2001) takes the form of

L (gαβ, ∂γ gαβ, ∂λ∂γ gαβ) = L (gij , ∂kgij , ∂l∂kgij ). (3.17)

Lagrangian with first and second derivatives of the metric components as additional
arguments plays an keyrole for the extension of Einstein tensor in relativistic gravi-
tation e.g. Cartan (1922), Exirifard and Sheikh-Jabbari (2008), Lovelock and Rund
(1975). In 1922, Cartan showed the uniqueness of the Einstein equations of relativis-
tic gravity (Cartan 1922). Result on diffeomorphism invariance (covariance) we are
now proving extends this Cartan’s result, to a nonlinear dependence of Lagrangian
on metric second derivatives ∂λ∂μgαβ . The corresponding Euler–Lagrange equa-
tions deduced from the covariant Lagrangian can be used for that purpose.

Remark 3.1 It is necessary to clarify the link between invariance of the equations
(their form) and the physical relativity principle e.g. Betram and Svendsen (2001),
Westman and Sonego (2009). Coordinates (xμ) in relativistic gravitation are merely
mathematical parameters to label spacetime point (event) and do not have any
operational property. Such is not the case for Newtonian mechanics and special
relativity.

For remind, because no observer is distinguished, laws in physics have to be
observer-invariant (frame indifference). The keypoint is to define the group of
invariance. Each physics theory has its invariance group. Galilean invariance is
required for classical mechanics whereas Minkowskian invariance is the basis for
special Relativistic mechanics, the later is imposed by the need of compatibility of
mechanics and electromagnetic fields and propagation.

Anyhow, this should be completed by the fact that matter Lagrangian functions
L should have at least the same shape for arbitrary coordinate systems. The link
between the two concepts was not very clear e.g. Bain (2004). Interestingly, Ryskin
gave an accurate formulation of objectivity (more recent term defining the material
frame indifference) as “Any physical law must be expressible in a form-independent
of coordinate system” (Ryskin 1985). This is called covariance in the Einstein
language. Further, it was extended to four dimensional formalism, thus including the
time variable, and suggests that every physical law verifying the diffeomorphism-
invariance seems also material frame indifferent. However, this is not true.
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3.3.1 Transformation Rules for the Metric and Its Derivatives

According to the definitions (2.20) and (2.21), the metric components and its
derivatives satisfy the following rules of transformations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

gij = J αi J βj gαβ
gij,k = (J αikJ βj + J αi J βjk)gαβ + J αi J βj J γk gαβ,γ
gij,kl = (J αiklJ βj + J αikJ βjl + J αil J βjk + J αi J βjkl)gαβ

+ (J αikJ
β

j J
γ

h + J αi J βjkJ γl + J αil J βj J γk + J αi J βjlJ γk + J αi J βj J γkl )gαβ,γ
+ (J αi J

β
j J

γ
k J

λ
l )gαβ,γ λ

(3.18)

According to the symmetry Jμpq = Jμqp (the transformation is assumed of class
C2), one can write Jμpq = (1/2)(Jμpq + J

μ
qp), that induces (∂J αij /∂J

μ
pq) =

(1/2)δαμ(δ
q

i δ
p

j + δqj δpi ), (∂J αijk/∂Jμpq) = 0 and (∂J αi /∂J
μ
pq) = 0. If one does

not consider the symmetric part then there is a loss of some terms in the derivation.
Now, introducing the expressions (3.18) into the equality (3.17), and differentiating
with respect to Jμpq give

0 = Λij,k
[
δαμ(δ

q
k δ
p
i + δqi δpk )J βj + δβμ(δqk δpj + δqj δpk )J αi

]
gαβ

+ Λij,kl
[
J αi J

β
j δ
γ
μ(δ

q
k δ
p
l + δql δpk )+ J αi J γk δβμ(δqj δpl + δql δpj )

]
gαβ,γ

+ Λij,kl
[
J
β

j J
γ

k δ
α
μ(δ

q

i δ
p

l + δql δpi )+ J αi J γl δβμ(δqj δpk + δqk δpj )
]
gαβ,γ

+ Λij,kl
[
J
β
j J

γ
l δ
α
μ(δ

q
i δ
p
k + δqk δpi )

]
gαβ,γ

+ Λij,kl
[
J
β
jkδ

α
μ(δ

q
i δ
p
l + δql δpi )+ J αil δβμ(δqj δpk + δqk δpj )

]
gαβ

+ Λij,kl
[
J
β
jlδ

α
μ(δ

q
i δ
p
k + δqk δpi )+ J αikδβμ(δqj δpl + δql δpj )

]
gαβ

Previous equation is valid for arbitrary coordinate transformation, in particular for
the identity transformation: xα = yi , J αi = δαi , J αij = 0. In such a case, we simplify

0 = Λij,k
[
δαμ(δ

q

k δ
p

i + δqi δpk )δβj + δβμ(δqk δpj + δqj δpk )δαi
]
gαβ

+ Λij,kl
[
δαi δ

β
j δ
γ
μ(δ

q
k δ
p
l + δthδpk )+ δαi δγk δβμ(δqj δpl + δql δpj )

]
gαβ,γ

+ Λij,kl
[
δ
β
j δ
γ

k δ
α
μ(δ

q
i δ
p
l + δql δpi )+ δαi δγl δβμ(δqj δpk + δqk δpj )

]
gαβ,γ

+ Λij,kl
[
δ
β
j δ
γ
l δ
α
μ(δ

q
i δ
p
k + δqk δpi )

]
gαβ,γ
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Further simplifications and symmetry of Λ induce1

2Λqβ,γpgμβ,γ + 2Λpβ,γ qgμβ,γ +Λαβ,pqgαβ,μ +Λpβ,qgμβ +Λqβ,pgμβ = 0.

(3.19)

In the particular case of a normal coordinate system, these reduce to Λpμ,q +
Λqμ,p = 0. According to the symmetry of Λij,k , for arbitrary indexes i, j, k, we
have

Λji,k +Λki,j = 0

Λkj,i +Λki,j = 0 (i ←→ k)

Λji,k +Λkj,i = 0 (i ←→ j)

then Λji,k = −Λki,j = Λkj,i = −Λji,k , and finally

Λji,k = Λij,k = 0. (3.20)

Nevertheless Eq. (3.20) are only valid in normal coordinate system.

3.3.2 Introduction of Dual Variables

Introducing the expressions (3.18) into (3.17) and differentiating respectively with
respect to gαβ,γ λ, gαβ,γ , gαβ , allow to write

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Λαβ,γ λ = Λij,klJ αi J βj J γk J λl
Λαβ,γ = Λij,kl ∂gij,kl

∂gαβ,γ
+Λij,k ∂gij,k

∂gαβ,γ

Λαβ = Λij,kl ∂gij,kl
∂gαβ

+Λij,k ∂gij,k
∂gαβ

+Λij ∂gij
∂gαβ

(3.21)

The first equation shows that Λij,kl are components of a type (4, 0) tensor.
Conversely the two other equations show that Λij,k and Λij are not components
of tensor. Thus we should introduce two tensorial quantities instead of Λij,k and
Λij respectively. Let h an arbitrary symmetric type (0, 2) tensor (i.e. h follows the
same rule of transformation (3.18) as g), and Πij and Πij,k (the comma “,” does
not represent partial derivative) two unknown quantities that verify the following
equation

Λij,klhij,kl +Λij,khij,k +Λijhij = Λij,klhij |k|l +Πij,khij |k +Πijhij (3.22)

1Latin indices and Greek indices mix since the transformation is the identity.
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The covariant derivatives (2.42) and (2.43) are introduced into (3.22), that reduce to
an equality without covariant derivative terms. It depends on {Γ kij , Γ kij,l}, {hij , hij,k ,

hij,kl}, {Λij , Λij,k , Λij,kl} and {Πij , Πij,k}. Then, the Lemma 3.2 is applied to
Eq. (3.22) in order to identify the coefficients of hij,k and hij (coefficients of hij,kl
are the same in both hand sides of equation). Some worth permutations between the
indices are necessary. For the sake of the clarity, details of calculus are reported in
appendix. Remind that Λij , Λij,k and Λij,kl have symmetry properties. Such is not
necessary the case forΠij and Πij,k . Thus we obtain the following equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Π
ij,k

(S) = Λij,k + 2Γ ialΛ
aj,kl + 2Γ jalΛ

ia,kl + Γ kblΛij,bl
Π
ij

(S) = Λij + Γ iak,lΛaj,kl + Γ jak,lΛia,kl
− Γ balΓ

i
bkΛ

aj,kl − Γ bclΓ jbkΛic,kl
− Γ iblΓ

j

ckΛ
bc,kl − Γ jblΓ ickΛbc,kl

− Γ bklΓ
i
cbΛ

cj,kl − Γ bklΓ jcbΛci,kl
+ (1/2)Γ iak(Π

aj,k +Πja,k)+ (1/2)Γ jak(Πia,k +Πai,k)

(3.23)

whereΠij,k(S) = (1/2)(Πij,k +Πji,k) and Πij(S) = (1/2)(Πij +Πji).
Lemma 3.3 F := Λij,klhij,kl +Λij,khij,k +Λijhij is a scalar field.

Proof Let us notice F = Λij,klhij,kl+Λij,khij,k+Λijhij and F = Λαβ,γ λhαβ,γ λ+
Λαβ,γ hαβ,γ + Λαβhαβ respectively in coordinate system (yi) and (xα). According
to (3.21), we get

Λαβ,γ λhαβ,γ λ =
[
Λij,klJ αi J

β
j J

γ
k J

λ
l

]
hαβ,γ λ

Λαβ,γ hαβ,γ =
[
Λij,kl

∂gij,kl

∂gαβ,γ
+Λij,k ∂gij,k

∂gαβ,γ

]
hαβ,γ

Λαβhαβ =
[
Λij,kl

∂gij,kl

∂gαβ
+Λij,k ∂gij,k

∂gαβ
+Λij ∂gij

∂gαβ

]
hαβ

Factorization of the coefficients of Λij,kl , Λij,k and Λij gives F = (a)+ (b)+ (c)
with

(a) = Λij,kl
[
∂gij,kl

∂gαβ,γ λ
hαβ,γ λ + ∂gij,kl

∂gαβ,γ
hαβ,γ + ∂gij,kl

∂gαβ
hαβ

]

(b) = Λij,k
[
∂gij,k

∂gαβ,γ
hαβ,γ + ∂gij,k

∂gαβ
hαβ

]

(c) = Λij
[
∂gij

∂gαβ
hαβ

]
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According to the relations (3.18), the quantities in square brackets are simplified,
(a) = Λij,kl [hij,kl

]
, (b)= Λij,k [hij,k

]
, (c) = Λij [hij

]
and thus F = F . ��

Lemma 3.4 (F - Λij,klhij |k|l ) is a scalar.

Proof Let us noticeG := Λij,klhij |k|l andG := Λαβ,γ λhαβ|γ |λ. By (3.21) we have

Λαβ,γ λhαβ|γ |λ = Λij,klJ αi J βj J γk J λl hαβ|γ |λ (3.24)

h being a type (0, 2) tensor, the second covariant derivative hαβ|γ |λ forms the

components of a type (0, 4) tensor. Consequently J αi J
β
j J

γ

k J
λ
l hαβ|γ |λ = hij |k|l , thus

G = G. By previous lemma, we have F −G = F −G. ��
Remark 3.2 A direct and simple proof may be obtained by observing that Λijkl is
in fact a type (4, 0) tensor and hij |k|l is a type (0, 4) tensor, then their contraction is
a scalar.

Consequently, Πij,khij |k + Πijhij is a scalar for an arbitrary type (0, 2)tensor h.

Using the quotient Theorem 3.3, Πij,k(S) and Πij(S) are the components of type (3, 0)
and (2, 0) tensor respectively, these tensors are also symmetric.

3.3.3 Theorem

Expressions ofΠij,k(S) in Eq. (3.23) hold in an arbitrary coordinate system. In normal
coordinate system, the Christoffel symbols vanish, e.g. Nakahara (1996) and we
have, from (3.23), Πij,k(S) = Λij,k . However, from (3.20) Λij,k = 0 in normal

coordinate system, thus Πij,k
(S)

= 0 in normal coordinate system and this is also

true for any other coordinate system, because Πij,k(S) are components of tensor. The
first equation in (3.23) is simplified in any coordinate system

0 = Λij,k + 2Γ ialΛ
aj,kl + 2Γ jalΛ

ia,kl + Γ kblΛij,bl . (3.25)

We can establish the following theorem:

Theorem 3.4 Let a scalar field L = L
(
gij , gij,k, gij,kl

)
defined on a Riemannian

manifold. If
∂L

∂gij,kl
= 0 then

∂L

∂gij,k
= 0.

Proof ∀ i, j, k, l, the conditionΛij,kl = 0 is introduced into (3.25). ��
Consequently, from the second equality of (3.23), we deduce

∂L

∂gij
= Π

ij

(S). An

equivalent formulation of Theorem 3.4 may be found in Lovelock and Rund (1975).
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Theorem 3.5 On a Riemannian manifold B, there does not exist a scalar density
such L = L (gij , ∂kgij ) that only depends on the metric components gij and their
first partial derivatives gij,k .

In any coordinate system, we have the following decomposition:

{
Πij = (1/2)(Πij +Πji)+ (1/2)(Πij −Πji)
Πij,k = (1/2)(Πij,k +Πji,k)+ (1/2)(Πij,k −Πji,k) (3.26)

In Lovelock and Rund (1975), the quantities Πij and Πij,k are assumed to be
symmetric with respect to the indices i and j : Πij = Πji , Πij,k = Πji,k

and it is proven that the quantities Πij,k are always zero. In the present study
it has been proven that only the symmetric part Πij,k(S) is null: the quantities

Πij,k are skew-symmetric Πij,k = −Πji,k . The present study is slightly more
general than result presented in Lovelock and Rund (1975). To study the fields
in physics, the arguments have to be tensors, as for L (g) depending on metric
tensor. To extend the arguments of L , defined on Riemannian manifold endowed
with an affine connection ∇, the new form is then L (g,∇g,∇2g) where all the
arguments are tensors. The corresponding form in the coordinate system (xα) is
L (gαβ,∇γ gαβ,∇λ∇γ gαβ). If the connection is Euclidean then we have ∇γ gαβ ≡
∂γ gαβ . Another motivation is that, according to the Lemma of Ricci e.g. Nakahara
(1996), the covariant derivative of the metric tensor g, in the sense of Levi-Civita
connection, is identically equal to zero.

3.4 Invariance with Respect to the Connection

Metric of matter is induced by ambient Euclidean space for classical mechanics
and Minkowskian spacetime for relativistic mechanics. Conversely there exist many
possibilities of choice for the affine connection. We demand that the metric be
covariantly constant: ∇g ≡ 0 to be compatible with the metric.2 This means
that ∇g cannot be an explicit argument of the Lagrangian L . This is the reason
why we should consider ∇ as an argument rather than ∇g. We labeled the
biconnection ∇2 = ∇ ◦ ∇. In order to extend the list of arguments of L , we will
consider the following forms: L (g,∇), L (g,∇2) and L (g,∇,∇2) e.g. Antonio
and Rakotomanana (2011). However connection is not tensor, thus we aim to
obtain tensorial arguments built upon the connection and/or the bi-connection. The

2Although we do not deal with the derivation of Euler–Lagrange equations associated to these
Lagrangian density functions L , it is worth to mention that an appropriate divergence theorem
generalized Gauss formula, necessary to derive the equations of motion, is mandatory to the
definition of a compatible volume-form on the affine manifold (Saa 1995). For short, the condition
on the metric compatibility allows us to obtain such a volume-form easily.
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introduction of ∇, as advocated by Palatini, as Lagrangian function arguments is
also related to the affine variational method in relativistic gravitation. It is used to
obviate non covariance properties which arises when matter Lagrangian depends
upon metric derivatives.3 Beyond the compatibility of ∇ with the metric, we also
should consider the compatibility of the volume-form with the connection e.g. Saa
(1995). There is some arbitrariness in the choice of the volume-form on a affine
manifold but we can take

√
Detg within Lagrangian density L , and then can skip

this aspect.
Let now consider the link between local frame and affine connection. Let B

be continuum—a metric-affine manifold—endowed with a metric g, and an affine
connection ∇. Every neighbor of a point x can be considered as a microcosm which
has its own local Galilean group {Q(xi), v0(x

i)} defined by the transformation (a
local Newton–Cartan transformations): OM′(t) = Q(xi) [OM(t)]+ v0(x

i)t where
x0 := t , and where Latin indices are used for space coordinates i = (1, 2, 3). Let
two microcosms x := (x0, xi) and x + dx := (x0 + dx0, xi + dxi) with the line
element ds2 = gαβdx

αdxβ , Greek indices hold α, β = 0, 1, 3, say xμ(s). The
change of the local Galilean group from one microcosm to another is then obtained
with parallel transport (affine connection):

dv0 = ∇dxv0 =
(
∂βv

α
0 + Γ αβγ v

γ

0

)
dxβeα

dQ = ∇dxQ :=
(
∂γQ

α
β + Γ αγλQλβ − Γ λγβQαλ

)
dxγ eα ⊗ eβ

with coefficients Γ γαβ = eγ
(∇eαeβ

)
. It is then obvious that affine connection defines

change of local Galilean reference frames e.g. Kadianakis (1996). The method may
be extended to local Minkowskian spacetime and even to generalized change of
frames of references. In the following, we consider the invariance with respect to
connection (Fig. 3.1).

3.4.1 Preliminary

A scalar field of any sort which is not changed by the diffeomorphisms group
is called invariant (the shape of the function is not changed). For the sake of

3In the scope of relativistic gravitation, the underlying idea of Palatini e.g. Capoziello and de
Laurentis (2011) is to consider the connection Γ γαβ necessary to link two microcosms, independent
from the spacetime metric gαβ as independent argument for the Lagrangian density function.
There is no reason to limit the connection to Levi-Civita connection deduced from the metric.
Some studies on relativistic gravitation introduce the concept of bi-metric theory by considering
two slightly different metrics as gαβ and g̃αβ := f [R(Γ γαβ )] gαβ . Nevertheless we limit to a
rather general purpose by considering the metric, the connection and bi-connection as independent
arguments of L .
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Fig. 3.1 Local Galilean frames of references, characterized by an orthogonal transformation Q
and a velocity translation of frame v0, at two microcosms x, and x + dx depending on the line
element ds2 := gαβdx

αdxβ . For relativistic gravitation, the principle of equivalence applied for
two microcosms x, and x+dx allows us to reconstruct the four-dimensional global structure of the
spacetime with gravitation by means of connection ∇

the simplicity, we define the invariance of any scalar field (more precisely the
diffeomorphism-invariance): L (X, Y ) = L (X′, Y ′) with both formal arguments
X and Y defined in any two coordinate systems (with and without).

Lemma 3.5 Let us consider arbitrary constants K1, K2, C1, C2, C3 and the
variables x, x ′, y, y ′, p, p′, q , q ′ which follow the transformations

⎧
⎪⎪⎨

⎪⎪⎩

x ′ = K1 x +K2

y ′ = K1 y

p′ = C1 p + C2 (x + y)+ C3

q ′ = C1 q

(3.27)

Now let us consider a scalar function L which satisfies the equations
(diffeomorphism-invariance)

1 L (x, y) = L (x ′, y ′)
2 L (p, q) = L (p′, q ′)
3 L (x, y, p, q) = L (x ′, y ′, p′, q ′).

If (∂K1/∂K2) = 0, (∂K1/∂C3) = 0, (∂K2/∂C3) = 0, (∂C1/∂C3) = 0 then, from
equation (1) we have L (y) = L (y ′), from equation (2) we have L (q) = L (q ′),
from equation (3) we have L (y, q) = L (y ′, q ′).

Proof Equation 1: According to (3.27) we have L (x, y) = L (K1 x +K2,K1 y).
We differentiate this equation with respect to K2, to find

0 = ∂L

∂x ′
∂x ′

∂K2
+ ∂L
∂y ′

∂y ′

∂K2

0 = ∂L

∂x ′

[
∂K1

∂K2
x + 1

]
+ ∂L
∂y ′

∂K1

∂K2
y

which involves that ∂L /∂x ′ = 0 if ∂K1/∂K2 = 0. Then, according to (∂L /∂x) =
(∂L /∂x ′)(∂x ′/∂x), we prove that ∂L /∂x = 0. Equation 2 According to (3.27) we
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have L (p, q) = L (C1 p+C2 (x + y)+C3, C1 q). We differentiate this equation
with respect to C3, to find

0 = ∂L

∂p′
∂p′

∂C3
+ ∂L
∂q ′

∂q ′

∂C3

0 = ∂L

∂p′

[
∂C1

∂C3
p + ∂C2

∂C3
(x + y)+ 1

]
+ ∂L
∂q ′

∂C1

∂C3
q

which implies that ∂L /∂p′ = 0 if ∂C1/∂C3 = 0, the term in square brackets
not vanishing. Then, according to (∂L /∂p) = (∂L /∂p′)(∂p′/∂p), we prove that
∂L /∂p = 0. Finally we obtain L (q) = L (q ′). Equation 3 According to (3.27)
we have L (x, y, p, q) = L (K1 x + K2,K1 y,C1 p + C2 (x + y) + C3, C1 q).
We differentiate this equation with respect to C3, to find

0 = ∂L

∂x ′
∂x ′

∂C3
+ ∂L
∂y ′

∂y ′

∂C3
+ ∂L
∂p′

∂p′

∂C3
+ ∂L
∂q ′

∂q ′

∂C3

0 = ∂L

∂x ′

[
∂K1

∂C3
x + ∂K2

∂C3

]
+ ∂L
∂y ′

∂K1

∂C3
y + ∂L

∂p′

[
∂C1

∂C3
p + ∂C2

∂C3
(x + y)+ 1

]

+ ∂L

∂q ′
∂C1

∂C3
q

which implies that ∂L /∂p′ = 0 if ∂K1/∂C3 = 0, ∂K2/∂C3 = 0, ∂C1/∂C3 = 0.
Then we have too ∂L /∂p = 0. According to (∂L /∂x) = (∂L /∂p′)(∂p′/∂x), we
prove that ∂L /∂x = 0. Finally, according to (∂L /∂x) = (∂L /∂x ′)(∂x ′/∂x) =
(∂L /∂x ′) K1, we show that ∂L /∂x ′ = 0. Then we obtain L (y, q) = L (y ′, q ′).

��
Remark 3.3 The previous proof is based on the principle of fields invariance
introduced by Lovelock and Rund (1975). It is equivalent to the form-invariance,
a term borrowed from Svendsen and Betram (1999).

In an arbitrary coordinate system (yi), the metric components, the connection
and the bi-connection coefficients are respectively gij , Γ kij and Γ kij,l + Γ mij Γ klm.

The forms L (g,∇), L (g,∇2) and L (g,∇,∇2) are then explicitly written as
L (gij , Γ

k
ij ), L (gij , Γ

k
ij,l + Γ mij Γ klm) and L (gij , Γ

k
ij , Γ

k
ij,l + Γ mij Γ klm), respectively.

Let (xα) an other coordinate system, let us assume the diffeomorphism-invariance
of the scalar field L (three cases):

⎧
⎪⎨

⎪⎩

L (Γ kij ) = L (Γ
γ
αβ)

L (Γ kij,l + Γ mij Γ klm) = L (Γ
γ
αβ,λ + Γ μαβΓ γλμ)

L (Γ kij , Γ
k
ij,l + Γ mij Γ klm) = L (Γ

γ
αβ, Γ

γ
αβ,λ + Γ μαβΓ γλμ)

(3.28)
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where the metric components will be omitted for the sake of simplicity. For further
applications, let us introduce the following components:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T
k
ij = (1/2)

(
Γ kij − Γ kji

)

S
k
ij = (1/2)

(
Γ kij + Γ kji

)

B
k
lij = (1/2)

(
Γ kij,l + Γ mij Γ klm − Γ klj,i − Γ mlj Γ kim

)

A
k
lij = (1/2)

(
Γ kij,l + Γ mij Γ klm + Γ klj,i + Γ mlj Γ kim

)

(3.29)

According to (3.29), permutation between i and j allows the decomposition Γ kij =
S
k
ij+T

k
ij . A permutation between i and l allows the decomposition Γ kij,l+Γ mij Γ klm =

A
k
lij+B

k
lij . A first permutation between i and j then another successive permutation

between i and l allow the simultaneous decompositions Γ kij = S
k
ij +T

k
ij and Γ kij,l +

Γ mij Γ
k
lm = A

k
lij + B

k
lij . Details of calculus are given in appendix. Thanks to these

decompositions, covariance of L (3.28) becomes

⎧
⎪⎨

⎪⎩

L (Skij ,T
k
ij ) = L (S

γ
αβ ,T

γ
αβ)

L (Aklij ,B
k
lij ) = L (A

γ
λαβ,B

γ
λαβ)

L (Skij ,T
k
ij ,A

k
lij ,B

k
lij ) = L (S

γ
αβ ,T

γ
αβ ,A

γ
λαβ,B

γ
λαβ)

(3.30)

3.4.2 Application: Covariance ofL

Let us consider the following identification of variables x, x ′, y, y ′, p, p′, q , q ′:

x = S
k
ij , y = T

k
ij , p = A

k
lij , q = B

k
lij , (3.31)

x ′ = S
γ
αβ, y

′ = T
γ
αβ, p

′ = A
γ
λαβ, q

′ = B
γ
λαβ. (3.32)

The transformation laws between the above variables take the form of (3.27) with
(see appendix)

{
K1 = J iαJ jβ Aγk
K2 = J jαβAγj

,

⎧
⎪⎨

⎪⎩

C1 = J iαJ jβ J lλAγk
C2 = J iαλJ jβ Aγk + J iλJ jαβAγk + J iαJ jβλAγk
C3 = J iμJ lλJ jαβAγj Aμil + J iμλJ jαβAμi Aγj

(3.33)
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We have ∂K1/∂K2 = 0, ∂K1/∂C3 = 0, ∂K2/∂C3 = 0, ∂C1/∂C3 = 0. According
to Lemma 3.5, the covariance of L (3.30) means

⎧
⎪⎨

⎪⎩

L (Tkij ) = L (T
γ
αβ)

L (Bklij ) = L (B
γ
λαβ)

L (Tkij ,B
k
lij ) = L (T

γ
αβ,B

γ
λαβ)

�⇒

⎧
⎪⎨

⎪⎩

L (ℵkij ) = L (ℵγαβ)
L (Rklij ) = L (R

γ
λαβ)

L (ℵkij ,Rklij ) = L (ℵγαβ,Rγλαβ)
(3.34)

since we can identify the torsion by ℵkij = 2Tkij and the curvature by Rklij = 2Bklij .

3.4.3 Summary for Lagrangian Covariance

For the sake of the simplicity we have temporarily omitted the argument gij . Adding
this argument does not change the proof. The overall result then includes the metric,
the connection, and the bi-connection as arguments of the Lagrangian function L .
We also have the covariance:

⎧
⎪⎨

⎪⎩

L (gij ,ℵkij ) = L (gαβ,ℵγαβ)
L (gij ,R

k
lij ) = L (gαβ,R

γ
λαβ)

L (gij ,ℵkij ,Rklij ) = L (gαβ,ℵγαβ,Rγλαβ)
(3.35)

All the arguments of L are components of tensors, they are invariant under the
action of the diffeomorphism (in the sense that they transform covariantly according
to usual tensor transformations depending of their type). Therefore, the Lagrangian
function is covariant.

Remark 3.4 Obviously, under change of coordinate system it is not expected to
generate any physical laws. In the framework of general relativity, the application
of the Minimal Coupling Procedure would be a conversion of all partial derivatives
∂γ gαβ , and ∂λ∂γ gαβ in the Minkowskian flat spacetime/continuumM into covariant
derivatives∇γ gαβ , and ∇λ∇γ gαβ and also choosing an appropriate volume-formωn
in the underlying curved and possibly spacetime/continuum with torsion. For metric
compatible connection, the standard MCP procedure would lead to ∇γ gαβ ≡ 0, and
∇λ∇γ gαβ ≡ 0. The present approach is slightly different and can be considered
as an extension of the MCP to Riemann–Cartan spacetime/continuum, since we
assume the connection and the bi-connection as independent arguments.

The results are summarized in the following theorem:

Theorem 3.6 Let a metric-affine manifold (B, g,∇) where the affine connection
is compatible with the metric (∇g = 0). To the connection are associated the
torsion tensor ℵ and the curvature tensor R. For any scalar function L defined on
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B, depending on the metric, the connection and the bi-connection, the covariance
induces:

L (g,∇) = L (g,ℵ), L (g,∇2) = L (g,R), L (g,∇,∇2) = L (g,ℵ,R)
(3.36)

Equation (3.36) can be read in the two ways:

1. L = L (g,∇) is covariant if and only if L = L (g,ℵ)
2. L = L (g,∇2) is covariant if and only if L = L (g,R)
3. L = L (g,∇,∇2) is covariant if and only if L = L (g,ℵ,R)
Covariance does not impose any restrictions on the spacetime theories (New-
tonian for classical mechanics, Minkowskian for special relativity, Riemannian
or Riemann–Cartan for relativistic gravitation). Covariance results conform to
gravitational Utiyama theorem showing that the invariance under both the spacetime
diffeomorphisms and the local Lorentz transformations impose the Lagrangian
density to depend upon the tetrads, the connection and their derivatives only through
the metric, torsion, and curvature e.g. Bruzzo (1987), Utiyama (1956). In the next
section, we investigate the consequences of Lorentz invariance with respect to
Lorentz transformations (2.14) of Lagrangian by means of gauge invariance. It
should be reminded that the Lagrangian cannot explicitly depend on spacetime
position (Bruzzo 1987; Kibble 1961).

3.4.4 Covariance of Nonlinear Elastic Continuum

A question would be the consequences of the covariance theorem in classical
nonlinear elasticity, owing that classical nonlinear elasticity is based among other on
the diffeomorphism assumption of the transformations of the body. For this purpose,
let consider in this subsection a classical model for analyzing the elastic continuum
deformation of a body B.

3.4.4.1 Covariance of Strain Energy Density

Let then consider the three dimensional continuum B evolving within a Euclidean
space E with metric ĝij . Each material point of B is labelled by coordinates (t,Xα)
in the initial configuration and by (t, xi) in the actual deformed configuration. The
basic assumption on the transformation of the body is the diffeomorphism property
of the mapping ϕt : Xα → xi = ϕit (X

α). The triads reduce to the deformation
gradient F iα := ∂αϕ

i
t allowing us to determine the components of the metric g of

the space E as follows gαβ = Cαβ := F iαĝij F
j
β . We remind that Cαβ denotes a

quite common notation for the classical right Cauchy–Green strain tensor in the
framework of nonlinear elasticity e.g. Marsden and Hughes (1983). It is worth to
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remind that the Cauchy-Green tensor (also called material metric tensor) may be
interpreted as the components of the spatial metric tensor onto the deformed material
base fα, α = 1, 2, 3 as follows:

Cαβ := fα · fβ, fα := F iαei
where ei , i = 1, 2, 3 is a vector base in the initial configuration, embedded in the
continuum body and deforms with it. Then the induced metric in the continuum
matter is decomposed along the dual base fα, α = 1, 2, 3 on the tangent space:

g = Cαβ fα ⊗ fβ (3.37)

For strain gradient continuum models, partial derivatives of the metric compo-
nents are often used as additional primal variables in the framework of gradient
elasticity to give L (gαβ, ∂γ gαβ, ∂λ∂γ gαβ, · · · ) e.g. Askes and Aifantis (2011),
Metrikine (2006), Mindlin (1964). For the sake of the formulation invariance the
previous Lagrangian function of strain gradient continuum models should be written
in terms of covariant derivatives as follows L (Cαβ,∇γ Cαβ,∇λ∇γ Cαβ, · · · ) where
∇ is a connection (to be defined).

Corollary 3.1 Say an elastic continuum B evolving in a Euclidean space E with
a Lagrangian function L , owing that the transformation of B is assumed to be
diffeomorphism. Then the Lagrangian function (the elastic potential) could not
depend on the covariant derivative of the right Cauchy-Green tensor, inducing that:

L := (ρ/2)gij ∂tϕit ∂tϕjt −U (Cαβ,∇γ Cαβ) → L

:= (ρ/2)gij ∂tϕit ∂tϕjt −U (Cαβ) (3.38)

Proof Indeed, it is straightforward to show that the covariant derivative of the metric
induced by the Euclidean space E in the continuum identically vanishes∇γ gαβ ≡ 0,
or in a elasticity notation ∇γ Cαβ ≡ 0.

∇γ Cαβ = ∂γCαβ − Γ μγαCμβ − Γ μγβCαμ
with respectively the connection coefficients:

Γ μγα = (1/2)Cμσ
(
∂γ Cσα + ∂αCγσ − ∂σCγα

)

Γ
μ
γβ = (1/2)Cμσ

(
∂γ Cσβ + ∂βCγσ − ∂σCγβ

)

We (obviously) deduce the vanishing of the covariant derivative of the right Cauchy-
Green strain tensor:

∇γ Cαβ ≡ 0 (3.39)
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confirming that the usual connection that is used in classical elasticity is a metric
compatible connection. ��

3.4.4.2 Examples of Nonlinear Elastic Material Models

Let denote the matrix C := [Cαβ
]

for the sake of the simplicity. The most usual
models of nonlinear elastic material are:

1. the compressible Kirchhoff-St Venant model:

U := λ

2
Tr2C+ μTr

(
C2
)

where the real numbers λ and μ are called Lamé’s elastic parameters;
2. the incompressible Mooney-Rivlin model:

{
U := C1 (I1 − 3)+ C2 (I2 − 3)
I3 ≡ 1

where the real numbers C1 and C2 are elastic parameters, and I1 := TrC and
I2 := (1/2)

[
Tr2C− Tr

(
C2
)]

and I3 := DetC are invariants of the matrix C.
The incompressibility of the material is defined by the second row.

Remark 3.5 This is in fact nothing more that a particular case of the theorem
established by e.g. Lovelock and Rund (1975). The consequence of this corollary
might be that the covariant gradient of the metric could not be used as primal
variable for the strain energy density, and this is to be related with the previous
theorem (3.6) to conclude that additional primal variables should be constructed by
means of torsion and curvature. This is a basic requirement for the nonlinear elastic
model to be covariant (Fig. 3.2).

As a remind, continuum B has compatible displacement field whenever the
torsion and curvature vanish everywhere e.g. Maugin (1993), Rakotomanana (2003).
Indeed, the displacement vector has three components whereas there are six
relations between metric and (gradient of) displacement, meaning that the system
is overconstrained. Satisfying compatibility of displacement and metric in three
dimensional nonlinear elasticity results in the vanishing of torsion and curvature e.g.
Rakotomanana (1997). The metric compatibility (3.39) constitutes another relation
that is satisfied by the metric. Considering non metric compatible connection ∇̃
might be possible but the geometric background of the continuum B should then
be extended on a Weyl manifold rather than on a Riemann manifold by adding non-
metricity Qγαβ := ∇̃γ Cαβ �= 0. Accordingly, the Lagrangian would take the form
of:

L := (ρ/2)gij ∂tϕit ∂tϕjt −U (Cαβ,Q
γ
αβ) (3.40)
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Fig. 3.2 In the initial configuration of continuum body B evolving within a Euclidean space E
with metric ĝij , a local vector base (Ei , i = 1, 2, 3) tangent to the coordinate lines (Xμ) is defined
at each material point X which deforms to its position x in the deformed configuration ϕt (B). The
deformed local base tangent to the coordinate lines (xi) in the deformed configuration is given by
fα := ∂αϕit (Ei ), and the components of the embedded metric tensor onto the deformed base are
gαβ = Cαβ := ĝ

(
fα, fβ

) = fα · fβ e.g. Rakotomanana (2003)

where the non-metricity tensor is an independent additional primal variable of the
strain energy density e.g. Yavari and Goriely (2012). This may be related with some
aspects of residual stress and Eshelbian inclusion within nonlinear elastic solids. In
the following, we mainly focus on metric compatible connection.



Chapter 4
Gauge Invariance for Gravitation and
Gradient Continuum

4.1 Introduction to Gauge Invariance

Geometrization of continuum physics that is the formulation of constitutive laws
and conservation laws equations with respect to a reference spacetime involves
some steps. First of all, physical measurable quantities should be identified with
geometrical variables (metric, torsion, and curvature on the material manifold)
and other additional variables if any. Second point, the spacetime is generally a
dynamical background with its metric, torsion, and curvature, such is the case for
general relativity. Then it is required to specify how all these geometrical variables
are generated and modified by physical objects, namely material particle, material
elements as line, surface, volume, defects, and how these physical objects evolve
during the interaction of the continuum matter and the spacetime. The basic tool
for deriving constitutive laws and conservation laws from a Lagrangian density
lies on the concept of variation. Some aspects of variation calculus are introduced
in the present chapter, namely the Lagrangian variation and the Eulerian variation
(Poincaré invariance).

4.1.1 Transition from Covariance to Gauge Invariance

The first Lagrangian of Eq. (3.36) defines Weitzenböck continua which is well
suited to model the tele parallel gravitation theory e.g. Hayashi (1979) and the
theory of nonlinear elastic and plastic dislocations e.g. Lazar (2002), Le and Stumpf
(1996). The second allows us to define the Lagrangian approach for Einstein
gravitation e.g. Kleinert (2008). The third class extends the relativistic gravitation to
Einstein–Cartan theory of gravitation, to metric-affine gravity e.g. Bruzzo (1987),
Sotiriou and Liberati (2007), and to the concept of weakly continuous medium
e.g. Rakotomanana (1997), or equivalently e.g. Ruggiero and Tartaglia (2003). A
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Fig. 4.1 Sketch of the various invariance concepts. The continuum matter B as well as the
spacetime M or M ′are modelled as Einstein–Cartan manifold having their own metric, torsion and
curvature. The theorem on covariance is applied both on any Lagrangian function on the spacetime
M or M ′, and on the continuum body B following a change of coordinate system xμ → yμ.
The Poincaré invariance concerns the motion of the B with respect to M (or M ′). The Poincaré’s
gauge invariance allows us to derive the conservation laws

spacetime (resp. continuum matter) where non metricity ∇γ gαβ vanishes can be
pictured as a set of infinite number of Minkowskian (resp. Euclidean) “microcosms”
glued together by means of affine connection Γ γαβ (Gonseth 1926; Pettey 1971).
Depending on the affine connection (with/without torsion and/or curvature), sets of
microcosms become the spacetime with gravitation for general relativity, and for
strain gradient continuum. We consider in this section the invariance of Lagrangian
with respect to the choice of affine connection (Kadianakis 1996). The basic
question is to relate arbitrariness of connection with the invariance of Lagrangian
with respect to a frame of reference (Fig. 4.1).

Different observers can only compare motions and transformations of a con-
tinuum if the reference frames of these observers are known along with laws
of transformations: Galilean transformations for classical mechanics, and Lorentz
transformations for special relativistic mechanics (Bernal and Sanchez 2003). It is
interesting to relate these results with the fundamental findings in Kibble (1961)
which studied the existence of free Lagrangian L in gravitation by starting with its
invariance with respect to Lorentz transformations group in a flat spacetime. Later
developments on affinely connected manifolds and their relation with mechanics
show that there is correspondence between the set of reference frames of a spacetime
manifoldM and the set of compatible connections onM (Kadianakis 1996). There-
fore, it strongly suggests that when we impose arbitrariness of affine connection, we
implicitly impose, at least partially, invariance of Lagrangian density, and by the way
the invariance of constitutive relations, with respect to change of reference frame:
this is directly related to frame-indifference principle e.g. Betram and Svendsen
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(2001), Ryskin (1985), Söderholm (1970) (in relativistic mechanics), Svendsen and
Betram (1999), and as historical reference (Truesdell and Noll 1991). This may give
new insights on the (old) debate on the covariance principle and the invariance of
physical theories with respect to reference frames.

The variational formulation of relativistic gravitation allows us to deduce first the
equations of gravitational fields, and the conservation laws in the same framework
e.g. Carter (1973). To point out the different steps of the, let remind the work of
Carter by starting to consider an action integral:

S :=
∫

B

(
U (gμν)− (1/2χ)R

)
ωn

modelling the motion of an elastic continuum with energy U depending on the
metric within a curved spacetime M . He has supposed that the displacement ξ
vanishes at the boundary ∂B. In such a case, the Lagrangian variation ΔS and
the Eulerian variation δS are the same, where the Lagrangian variation and the
Eulerian variation are related by Δ = δ + Lξ (Carter and Quintana 1977). Now the
variation of the action takes the following form:

ΔS =
∫

B

(
∂U

∂gμν
− 1

2χ
�μν

)
Δgμν ωn − 1

2

∫

B

(
U − 1

2χ
R

)
gμν Δgμνωn

+
∫

∂B
. . . (4.1)

where the last term consists in boundary contributions. By defining the stress-energy
tensor, and by expressing the Lagrangian variation of the metric:

T μν := 2
∂U

∂gμν
−U gμν, Δgμν = δgμν + Lξ gμν

we deduce the both the gravitational field equation and the conservation laws due
the arbitrariness of both the Eulerian variation of the gravitation field δgμν and the
Lie derivative of the local vector field ξ (see appendix for the Lie derivative):

{
χ T μν − (�μν − (R/2) gμν) = 0

∇ν [T μν − (1/χ) (�μν − R/2 gμν)] = 0

where we have dropped the terms at the boundary and the divergence term. Now,
provided we have the first Bianchi identity, the complete system of equations
reduces to:

⎧
⎪⎪⎨

⎪⎪⎩

χ T μν = (�μν − (R/2) gμν)
∇νT μν = 0

T μν = 2
∂U

∂gμν
−U gμν

(4.2)
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The field equation means the continuum matter bends the spacetime, whereas the
second equation expresses the conservation laws of the matter, extending the linear
and angular momentum equation. The third equation is the constitutive laws of
the matter. One important aspect in the reference (Carter 1973) was the logical
deduction of both three equations from one variational principle. In this section,
we introduce the affine connection of the manifold as geometrical argument in
additional to metric. Both the continuum body B and the spacetime M have
their own geometrical variables. The idea is that invariance with respect to affine
connection may be related to invariance of Lagrangian density with respect to
reference frame. From another point of view any local frame of references may be
identified with a triad (respectively tetrad) at each point of the manifold E. This is
the keypoint to extend the global invariance to local gauge invariance by considering
vector field as local translation when applying Poincaré’s gauge theory.

4.1.2 Mechanical Coupling of Matter and Spacetime

In this section, we consider the mechanical coupling meaning the interaction of the
metric, torsion, and curvature of the continuum matter with those of the spacetime
background. Other physical variables are omitted.

4.1.2.1 Spacetime Classification and Lagrangian

A metric-affine manifold (M , g,∇) with the most general metric compatible
connection is called Riemann–Cartan spacetime, often denoted U4. If the torsion
ℵγαβ vanishes, a U4 becomes a Riemannian spacetime, denoted V4 in the domain

of the General Relativity theory. If, alternatively, the curvature �λαβμ vanishes,
then a U4 manifold becomes Weitzenböck’s teleparallel spacetime, denoted T4
(Tele Parallel Gravity theory). Finally, the condition of zero curvature �λαβμ = 0

transforms a V4 into a Minkowskian spacetime M4, and zero torsion ℵγαβ = 0
transforms a T4 into an M4. In the scope of gravitation, using of Riemann–Cartan
manifold supports the idea to look for dynamical manifestation of spin-angular
momentum of matter e.g. Hehl and von der Heyde (1973), where the torsion tensor
is expected to describe additional rotational degrees of freedom. In the framework
of continuum mechanics, as earlier as 1955, Riemann–Cartan manifold constitutes
the geometric background for modeling continuous distributions of translational and
rotational dislocations e.g. Bilby et al. (1955). Covariance is required for both the
strain energy density of gradient continuum and the Lagrangian density involved in
relativistic gravitation. In this section, we assume that both the material continuum
and the spacetime are modeled by Riemann–Cartan manifolds with their own metric
and connection respectively. The covariance requirement may be extended and
applied to the theory of metric-affine gravity where Lagrangian density could be
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rewritten in a general manner to include strain gradient continuum1:

L = L (ĝαβ , ℵ̂γαβ, �̂γαβλ︸ ︷︷ ︸
spacetime

, gαβ,ℵγαβ,�γαβλ︸ ︷︷ ︸
matter

) (4.3)

clarify ω̂n or ωn from which we can define various subclasses of a generalized
continuum evolving within a more or less complex spacetime e.g. Clifton et al.
(2012). The introduction of different connections for spacetime and for matter is
now accepted in the literature (implicitly or explicitly) e.g. Appleby (1977), Bernal
and Sanchez (2003), Defrise (1953), Kadianakis (1996), Petrov and Lompay (2013),
Sotiriou and Liberati (2007), Tamanini (2012). Material metric and independent
connection are also introduced to model macroscopic and mesoscopic mechanical
interactions within matter. The great challenge of relativistic continuum mechanics
concerns the accounting for the interaction of matter and spacetime. More precisely,
modelling the interaction between the metric, torsion and curvature of the contin-
uum matter B and those of the spacetime M remains an wide open topics research.
Particularly, some authors have argued that the experimental testing of the presence
of spacetime torsion might be induced by macroscopic rotating objects e.g. Acedo
(2015), Mao et al. (2007). However, the measuring of spacetime torsion is only
possible in presence of spinning particles since its coupling with intrinsic particle
spin was argued very early e.g. Hehl and von der Heyde (1973), and even that its
coupling with macroscopic rotating bodies is in contradiction the basic theory of
Poincaré invariance. e.g. Hehl et al. (2013).

Remark 4.1 Consider a particular case of the Lagrangian (4.3) where the depen-
dence is slightly modified as L = L (ĝμν, F

μ
α ) where Fμα are tetrads, integrable

or not. Classical results of continuum mechanics on the objectivity (covariance)
induces that the Lagrangian should be expressed as L = L (ĝμν, gαβ :=
ĝμνF

μ
α F

ν
β ) e.g. Marsden and Hughes (1983), Truesdell and Noll (1991), and it is

a particular case of more tensorial functions e.g. Rakotomanana (2003).

4.1.2.2 Principle of Minimal Coupling

In order to formulate the variational principle of matter motion within a curved
spacetime, it is necessary to account the interaction of the matter and the spacetime
gravitation (Sciama 1964). The simplest interaction model would be the so-called
minimal coupling procedure. The classical Minimal Coupling Procedure (MCP) for
the function L is to replace the flat Lorentz spacetime metric ĝαβ and connection
∇̂ by the matter metric gαβ and connection ∇ respectively, especially by using
covariant derivatives instead of partial derivatives (for instance within a Cartesian
axes of the flat space). Starting with a generic shape of a Lagrangian, depending on

1Index 0 stands for time variable, then the Lagrangian L also stands for dynamical situation.
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the geometry of the continuum and some physical variablesΦ, say:

L = L (gαβ, Γ
γ
αβ, ∂λΓ

γ
αβ,Φ

μ, ∂ηΦ
μ, · · ·)

The previous result may be re-written as follows, by taking into account the
covariance of the Lagrangian,

L = L (gαβ,ℵγαβ,Rγαβλ,Φμ,∇ηΦμ, · · ·)

in which replacement of the partial derivative by the covariant derivative may be
considered as a minimal coupling procedure. However, thanks to the covariance
theorem we previously established, the arguments of the Lagrangian are directly
stated to be the metric, the torsion, and the curvature of matter. It should not
be forgotten the relation between spacetime connection and matter connection
that needs great cautious as we will see later. As extension, the MCP in the
gravitation theory would consist in decomposing the overall Lagrangian L into
a free gravitational Lagrangian LG depending on the metric, the torsion and the
curvature of the spacetime connection (∇̂), and in adding to a suitable matter
Lagrangian LM depending both on the metric and connection of the spacetime and
on the metric, the torsion and the curvature of the matter connection (∇).

Remark 4.2 Although there is a long last debate e.g. Hammond (2002), Hehl
et al. (1995) on the worthiness of introducing or not the torsion as geometric
variable of relativistic gravitation theory, there is at least no mathematical reason
to exclude the torsion as primal variable of the Lagrangian e.g. Garcia de Andrade
(2005). Einstein gravitation is based on the spacetime curvature. The main problem
is the detection of the space torsion (if any) since usual matter model without
microstructure such as matter torsion cannot detect torsion. Mao et al. have proposed
a gyroscopic experiments using macroscopic rotating bodies (Gravity Probe B
mission) to detect spacetime torsion (Mao et al. 2007), but it was shown that only
bodies with microstructure such as intrinsic spin could be exploited for that purpose
e.g. Hehl et al. (2013), Yasskin and Stoeger (1980). Nevertheless, results may differ
if using models of minimal coupling or model of nonminimal coupling (Puetzfeld
and Obukhov 2013b). The suggested general formulation of the Lagrangian (4.3)
includes all possibilities in relativistic gravitation when restricted to continuum
mechanics under gravitation.

The coupling of matter and spacetime needs great cautious e.g. Anderson (1981),
Sotiriou (2008), particularly when matter action is introduced and linearly coupled
with the classical Einstein–Hilbert action (theory based on scalar curvature of
spacetime). The general form of Lagrangian function (4.3) may be shaped to fit
some basic mathematical results in the domain of continuum immersed within
a curved spacetime. In this way some fundamental results were obtained e.g.
Anderson (1981) under some sound assumptions such as: (a) the spacetime M
is four-dimensional, (b) the Lagrangian L is a scalar density, and (c) the fields
(Euler–Lagrangian) equations of external variables (in our case the matter variables
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including the continuum metric gαβ , torsion ℵγαβ and curvature �γαβλ components
of material manifold) are of the first order in the spacetime metric and second
order for external variables. In such a case, the principle of minimal gravitational
coupling requires that the Lagrangian function L should be written as two
additive parts: the gravitational Lagrangian LG of the curved spacetime, and the
Lagrangian corresponding to the material continuum LM e.g. Anderson (1981). In
this paper, Anderson worked within a pseudo-Riemannian spacetime with gravity,
where torsion tensor identically vanishes ℵ̂γαβ (framework of Einstein relativistic
gravitation). He established the following theorem:

Theorem 4.1 Let L be a Lagrangian density L (ĝαβ, ∂λĝαβ , ∂λ∂μĝαβ ,Φi, ∂αΦi)
which satisfies the condition that the Euler–Lagrange equations associated to the
source variables Φi depend solely on arguments (ĝαβ, ∂λĝαβ ,Φi, ∂αΦi, ∂μ∂λΦi).
Then, the Lagrangian density L decomposes uniquely to the form:

L = LG(ĝαβ, ∂λĝαβ, ∂λ∂μĝαβ)+LM(ĝαβ, ∂λĝαβ , ∂λ∂μĝαβ ;Φi, ∂αΦi) (4.4)

where the scalar densities LG and LM satisfies: LM(ĝαβ , ∂λĝαβ, ∂λ∂μĝαβ; 0, 0) =
0, and for which the Euler–Lagrange equations of only the part LM and associated
to the spacetime variables depend on the arguments

{
ĝαβ, ∂λĝαβ , ∂λ∂μĝαβ ;Φi,

∂αΦi
}
, and the analogous Euler–Lagrange associated to the source variables

depend on the arguments:

{
ĝαβ , ∂λĝαβ;Φi, ∂αΦi, ∂μ∂αΦi

}
.

We deduce the corollary:

Corollary 4.1 Let consider a Lagrangian L which is a scalar density of the type:

L (ĝαβ, ∂λĝαβ , ∂λ∂μĝαβ ,Φi, ∂αΦi),

and if the arguments of the associated Euler–Lagrange of the spacetime variables
reduce to:

{
ĝαβ, ∂λĝαβ , ∂λ∂μĝαβ ;Φi, ∂αΦi

}
.

Then the Lagrangian density necessarily takes the form of:

L = a R√Detg+Λ√Detg+LM(ĝαβ , ∂λĝαβ, ∂λ∂μĝαβ;Φi, ∂αΦi) (4.5)

where a ∈ R, and Λ ∈ R are scalars, and where the scalar density LM satisfies:

LM(ĝαβ , ∂λĝαβ, ∂λ∂μĝαβ ; 0, 0) = 0 (4.6)

and for which the Euler–Lagrange equations of only the part LM and associated to
the spacetime variables depend on the arguments

{
ĝαβ, ∂λĝαβ, ∂λ∂μĝαβ;Φi, ∂αΦi

}
,
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and the analogous Euler–Lagrange associated to the source variables depend on the
arguments:

{
ĝαβ , ∂λĝαβ;Φi, ∂αΦi, ∂μ∂αΦi

}
.

Proof See the paper of Anderson (1981) for detailed proof and related lemma and
corollary. ��
Accordingly, in addition to the result obtained by Lovelock in the sixties, the general
form of the Lagrangian must take the form of (adapted from a theorem in Anderson
(1981), and provided the covariance theorem) e.g. Antonio and Rakotomanana
(2011):

L = L (ĝαβ , ℵ̂γαβ, �̂γαβλ; gαβ,ℵγαβ,�γαβλ) (4.7)

where both the spacetime and the matter may have their own metric and connection
e.g. Koivisto (2011). In view of this function (4.7), the presence of the spacetime
metric ĝαβ in the Lagrangian L is essential to allow the mutual interaction of the
spacetime and the matter (Lehmkuhl 2011). The presence of spacetime connection is
sought by analogy. Indeed, spacetime metric and connection and its first derivatives
are usually the arguments of spacetime Lagrangian LG(ĝαβ, ℵ̂γαβ , �̂γαβλ). They may
be different from arguments of matter Lagrangian density LM . In such a case,
the coupling between spacetime and matter should be investigated more deeply.
When dependence includes torsion and curvature, there is more complex coupling
as we will see later. A rather common method is to introduce the Green-Lagrange
strain tensor εαβ := (1/2)(gαβ − ĝαβ) as argument of the matter Lagrangian
e.g. Marsden and Hughes (1983). It is de facto a minimal coupling. Matter bends
the spacetime and “forces” resulting from the spacetime curvature is source of
deformation of matter. More generally, the description of the motion of a material
body within spacetime necessarily involves two continua (pseudo-Riemannian and
Riemannian manifolds for gravitation, and Euclidean and Riemannian manifolds for
strain gradient continuum) e.g. Bernal and Sanchez (2003), Defrise (1953). Classical
fields of physics can be unified by modelling spacetime as a four dimensional finite
but unbounded elastic continuous medium, which can deform in presence of matter-
energy fields. In this case, the material body (gradient or simple material) is regarded
as the 3D boundary of a world-tube in such a way that the outside the world-tube
(material) the region is empty.

4.2 Gravitation, Fields, and Matter

Recasting physics theory into the language of an action principle by means of
Lagrangian density function is a cornerstone for obtaining invariant formulation
(Sciama 1964). Lagrangian formalism over differentiable manifoldB with an affine



4.2 Gravitation, Fields, and Matter 103

connection and a metric includes three basic structures e.g. Manoff (1999): (a) the
Lagrangian density L and the choice of its arguments; (b) the Euler–Lagrange
equations, obtained by variation procedure; and (c) the energy-momentum tensors,
or constitutive relations for models. All of them lead to the field equations by means
of gauge invariance.

4.2.1 Preliminaries

We give some known results about spacetimes and their hierarchical classification
according to their metric and associated connection. Before embarking in the
analysis of gravitation in various spacetimes, we get back for a while to the concept
of covariance and the principle of relativity by reminding the free fall of a particle.

4.2.1.1 Free Fall of a Particle

The free fall of a particle is governed by the equation stating that the acceleration
is equal to zero. Three possibilities ranging from Newton, Minkowski, and Einstein
approach will be considered:

1. Let remind the Newton’s first law for a particle of mass m (although the mass
does not matter in the absence of “forces”). With respect to a given frame, the
(three-dimensional) acceleration of this point is equal to zero:

a = 0 with a := du
dx0 (4.8)

where we use the coordinate system xμ := (x0 = ct, x1, x2, x3
)

(practically, it
means that we assume c = 1). Thus this free particle is at rest with respect to this
reference frame or it moves with constant velocity along a straight line.

2. The second case deals with the free fall of a particle with respect to a reference
with the velocity u. Newton’s law (4.8) is not invariant with respect to Lorentz
transformation in the special relativistic mechanics. We should consider the
four-acceleration (aμ). For that purpose, we consider the four-velocity vector
as defined in the relation (2.77) (with the convention c = 1):

uμ := dxμ

dτ
= dxμ

dx0

dx0

dτ
= γ

(
1, ui

)
, γ := 1

√
1− ‖u‖2

owing that the proper time τ is defined as follows:

(dτ)2 :=
(
dx0
)2 −

(
dx1
)2 −

(
dx2
)2 −

(
dx3
)2 �⇒ dx0

dτ
= γ
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with u := dxi/dx0ei is a three-dimensional velocity. Form the four-velocity
vector, we can derive the expression of the four-acceleration:

aμ := duμ

dτ
= dγ

dτ

(
1, ui

)
+γ
(

0,
dui

dτ

)
= dγ

dx0

dx0

dτ

(
1, ui

)
+γ
(

0,
dui

dx0

dx0

dτ

)

By accounting for the derivative:

d

dx0

(
‖u‖2

)
= 2u · du

dx0 = 2u · a

we deduce the Lorentz invariant formulation of the first Newton’s law:

aμ = γ 2
[
γ 2u · a, a+ γ 2u⊗ u (a)

]
= 0 (4.9)

which expresses the vanishing of the four-acceleration with respect to reference
frame. Of course the law (4.9) reduces to (4.8) when the norm of the particle
velocity u is small compared to the light speed.

3. The third case concerns the free fall of a particle with respect to an arbitrary
reference. The covariant expression of the free fall equation projected onto a
generalized coordinate system requires a vacuum spacetime with the Levi-Civita
connection. The expression of the four-acceleration and by the way the covariant
formulation of the Newton’s first law are obtained:

aμ := duμ

dτ
+ Γ̂ μαβuαuβ = 0 (4.10)

with

Γ̂
γ

αβ := (1/2)ĝγ λ
(
∂βĝαλ + ∂αĝλβ − ∂λĝαβ

)

The connection coefficients reduce to the symbols of Christoffel Γ̂
μ

αβ has zero
torsion and zero curvature for a flat spacetime (free fall of the particle). Overline
means Levi-Civita connection and hat the link with spacetime (see below).
The acceleration (4.10) holds in any coordinate system (covariant) and in any
reference frame (inertial or not).

Remark 4.3 The three relations (4.8)–(4.10) give the equations of a particle in free
fall in Newton, special relativistic, and general relativistic mechanics respectively.
Generally, an inertial frame may be defined by a frame of reference where free
particles have zero acceleration. However in the general relativistic theory consider
free fall means that the only force acting on the particle is the gravitation of the
spacetime. In Newton’s and special relativistic theories, free fall means that there are
no gravitation at all. For nonuniform gravitation, inertial frames exist only locally.
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4.2.1.2 Some Basic Recall

We consider the vacuous spacetime (or space) endowed with the metric ĝij which
may depend or not of the coordinates xμ. Associated to this metric can be defined

connection coefficients Γ̂
γ

αβ , with zero torsion ℵ̂γαβ ≡ 0 but nonzero curvature

�̂λαβμ �= 0 e.g. Nakahara (1996). However, it is usual to start with the Minkowskian
flat spacetime with the metric ĝαβ with zero torsion, and zero curvature. Then
we consider the actual spacetime metric gαβ := ĝαβ + hαβ , where hαβ(xμ) is a
perturbation. With the metric and the curvature, Einstein built the theory of general
relativistic gravitation. The spacetime may also have non symmetric connection but
compatible with the metric. This gives the generic form of the coefficients Γ̂ γαβ :=
Γ̂
γ

αβ + T̂
γ
αβ where we observe a contortion tensor T̂γαβ �= 0. The Einstein–Cartan

theory is the extension of the relativistic gravitation theory, allowing the spacetime
to have nonzero torsion, it was suggested by Cartan in 1922. The application of the
covariance theorem states that any Lagrangian function L (ĝαβ, Γ̂

γ
αβ , ∂λΓ̂

γ
αβ) should

be written as L (ĝαβ, ℵ̂γαβ, �̂λαβμ) to be diffeomorphism invariant. Geometrical
approach was applied both in the study of defects through continuous media e.g.
Kröner (1981), Maugin (1993), Rakotomanana (2003), Wang (1967) and more
generally in gravitation physics, e.g. Kleinert (2008), Lovelock (1971), Vitagliano
et al. (2011). Previous papers interestingly considered the link between these two
theories when dimension is reduced to three e.g. Katanaev and Volovich (1992),
Verçyn (1990). In this section, we will omit if necessary the “hat” for the sake of the
simplicity, and we will give some known illustrations.

We now consider a continuum matter endowed with the metric gαβ which may
depend or not of the material coordinates xα. The continuum evolves within a
spacetime endowed with a metric ĝαβ ≡ δαβ for simplicity. Lagrangian of a
continuum depends on strain ε and possibly on other arguments. In continuum
mechanics, the metric is related with the Green-Lagrange strain by gαβ = δαβ+2εαβ
where δαβ is the identity type (0, 2) tensor e.g. Ruggiero and Tartaglia (2003).
This relation expresses that the displacement field (multivalued or not) modifies
the initial metric δαβ onto gαβ within matter. In the above relation, it is implicitly
assumed that material coordinates within the continuum are used for describing
the continuum transformation (in other words, we use Lagrangian description with
deformed vector base e.g. Rakotomanana 2003). Consequently the first type of
Lagrangian L we would like to analyze takes the form of (by abuse of notation)
L (εij , ∂kεij , ∂l∂kεij ) ≡ L (gij , ∂kgij , ∂l∂kgij ).2 Most of strain gradient models
use an affine connection which derives from metric. According to the Theorem 3.5
(Lovelock and Rund 1975), the form L (εij , ∂kεij ) cannot exist. Such a finding

2Lagrangian density of type I as L (gij , ∂kgij , ∂l∂kgij ) or of type II as L (gij ,∇kgij ,∇l∇kgij )
was considered in Manoff (1999) where three kinds of variational procedures, say the functional
variation, the Lie variation, and the covariant variation, were used to derive the fields equations of
Einstein’s gravitation theory.
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conforms to the results in Lovelock’s theory of gravitation, where he showed
that the Lagrangian density concomitant to the metric and its first two derivatives
necessary takes the form of L (g,�) (Lovelock 1971). By the way this class
of Lagrangian densities has the advantage to satisfy the consistency between the
Palatini formulation (introduction of an independent connection as arguments) and
the metric gravity formulation e.g. Exirifard and Sheikh-Jabbari (2008). Then the
possible forms are e.g. Agiasofitou and Lazar (2009): (a) L (εij ) which is used in
classical elasticity theory; and (b) L (εij , ∂l∂kεij ) and L (εij , ∂kεij , ∂l∂kεij ) which
are used in strain gradient theory.

When the connection is Riemannian,3 among the arguments of the material
Lagrangian function we necessarily consider second order derivative of the strain
as additional variable. We obtain continuum of grade three in terms of displacement
e.g. Agiasofitou and Lazar (2009). Let a continuum modeled by a metric-affine
manifold endowed with a connection compatible with the metric. (a) L (g,ℵ =
0,R = 0) corresponds to an elastic strain energy function; (b) L (g,ℵ) is associated
to an elastic continuum with dislocation. (c) L (g,ℵ,R) is associated to an elastic
continuum with dislocation and disclination. The elasticity refers to the metric
as argument of the Lagrangian function. However the general form is far from
tractable. It is worth to introduce the Riemann curvature as �ναβμ := gνγ �γαβμ
and also the Ricci curvature tensor �αβ := �λλαβ . For compatible connection, say
∇g ≡ 0, the Ricci curvature tensor is symmetric. Curvature of a three dimensional
manifold is uniquely determined by the Ricci tensor. The scalar curvature is
defined by the contraction � := gαβ �αβ . As for the metric-affine gravity theory
e.g. Vitagliano et al. (2011), the matter Lagrangian density takes the form of
L
(
gαβ,�αβ

)
, owing that metric and curvature are independent variables. This

defines models of second strain gradient continua, for which the torsion is equal
to zero.

4.2.1.3 Hierarchical Order of Continuum Structures

It is worth to present the hierarchical order of the geometric structures of spacetime
and gradient continua:

Metric
affine

geometry
∇g ≡ 0

Riemann/
Cartan

geometry

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ℵ ≡ 0
Riemann
geometry

� ≡ 0

� ≡ 0
Weitzenboeck

geometry
ℵ ≡ 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Euclidean/
Minkowski
geometry

where the conditions given before a geometry are constraints to be applied to that
geometry. The metric compatibility condition is an essential property of a continuum

3The Euclidean connection derived from the metric tensor of a reference body was mostly the
connection used in continuum mechanics for over two centuries, e.g. Rakotomanana (2003).
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Fig. 4.2 Somigliana
dislocation. V is an added
matter after cutting the
continuum and separating the
two opposite faces of the
boundary ∂V with a small
displacement field b(x),
considered as discontinuity of
vector field

Continuum 

b(x) 

V 

added matter

to survive as a continuum after non holonomic (plastic) deformation e.g. Verçyn
(1990). From right to left, the geometric structure describes a strongly continuous
body e.g. Marsden and Hughes (1983), a body with rotational and/or translational
dislocations, and more general weakly continuous bodies e.g. Rakotomanana
(1997). The analogy with spacetime holds. The non compatibility ∇γ gαβ �= 0
between the metric and the connection leads to another more extended version of
dislocations, called Somigliana dislocations. The geometric background associated
to Somigliana field of dislocation is the Weyl manifold where additional primal
variables are the non-metricity tensor Qγαβ := ∇γ gαβ . A Somigliana dislocation
is idealized in terms of a closed volume V of “added/subtracted matter” located
within a continuum, as reported on Fig. 4.2. After cutting the body and separating
two opposite faces, the operation is represented by a small displacement field b(x)
(discontinuity of vector field), the empty space is then filled with “added matter”
(or “subtracted matter” if the two faces penetrate each other after the cutting). The
volume V is finally glued to obtain a new continuum with a Somigliana dislocation.
Residual stress is generated by the presence of Somigliana dislocation e.g. Clayton
et al. (2005). Volterra translational and rotational dislocations are particular case
where the faces are linear and no matter is added or subtracted. Potential application
of the Somigliana dislocations concept (added mass evolution) lies in the domain of
living tissues adaption following non physiological stress in biomechanics of bone
and ligaments e.g. Terrier et al. (2005). Indeed for these living matter, mass creation
is the natural process for the growing.

4.2.2 Newton–Cartan Formalism for Classical Gravitation

Extension of the special non-relativistic spacetime to include gravitation is first
due to Cartan (1986) and later in e.g. Havas (1964), and for continuum mechanics
in e.g. Duval and Kunzle (1978). For classical continuum mechanics, metric
and connection associated to gravity Lagrangian reduces to those of Newtonian

spacetime, that is Γ kij = Γ kij with non zero curvature.
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4.2.2.1 Classical Gravitation

In this subsection, to avoid unnecessary complication of notation, we denote Γ kij
without hat the spacetime connection coefficients. In both the weak field condition
(for earth gravitation this means that GM/(c2R) << 1) (G is the constant of
gravitation, M earth mass, R earth radius, and c light speed) and the low speed
motion i.e. v/c << 1 the difference between Newton gravitation and general
relativistic gravitation may be neglected e.g. Shen and Moritz (1996). Connections
in Newtonian gravitation are introduced as follows. We consider a particle in a
gravitational potential U and write its linear momentum equation on the one hand,
after worthily choosing a parameter λ := a t + b to derive the second motion
equation,

d2xi

dt2
= − ∂U

∂xi
�⇒ d2xi

dλ2 +
∂U

∂xi

(
dt

dλ

)2

= 0

On the other hand, let consider the usual geodesic equation:

d2xi

dλ2 + Γ ijk
dxj

dλ

dxk

dλ
= 0

where Γ ijk are the connection coefficients of the spacetime with gravitational field.
These two previous equations allow us to identify the connection, and then the
torsion and curvature with physical environment. Let consider the geodesic for
Riemannian metric manifold for analyzing the classical gravitation with a potential.
As a remind we consider a variational approach. For a curved spacetime, the proper
time is defined as ds := dτ with the coordinate system (x0 := ct, x1, x2, x3). The
propertime necessary for a particle to go from event A to event B along an arbitrary
timelike curve is:

τAB :=
∫ B

A

dτ =
∫ B

A

√
gαβ(xμ)dxαdxβ =

∫ B

A

√

gαβ(xμ)
dxα

dλ

dxβ

dλ
dλ

where λ is an arbitrary affine (real) parameter. We can therefore introduce the

Lagrangian function L (xμ, ẋμ, λ) :=
√
gαβ(xμ)

dxα

dλ
dxβ

dλ
in which dot means a

derivative with respect to λ. Considering the action S := ∫ BA L (xμ, ẋμ, λ)dλ we
obtain after some tedious calculus the following equation e.g. Kleinert (2008):

d2xγ

dλ2 + Γ γμν
dxμ

dλ

dxν

dλ
= 0, Γ

γ

μν :=
1

2
gγ κ

(
∂μgκν + ∂νgμκ − ∂κgμν

)

(4.11)

This is the equation of motion for the particle moving on a timelike geodesic in
the curved spacetime. It may be also considered as the demonstration that the
Levi-Civita connection Γ

γ

μν is the appropriate connection with this approach. It
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is conventional to write the geodesic equation (4.11) by means of a differential
operatorD/Dτ :

Duγ

Dτ
≡ 0, with

Dvγ

Dτ
:= dvγ

dτ
+ Γ γμνuμvν (4.12)

for any vector field vγ , and where τ is the proper time and uμ := dxμ/dτ the
four-vector velocity. In classical gravitation, geodesic curves are metric geodesics
meaning curves of extremal spacetime interval with respect to the metric, say
ds2 := gαβdx

αdxβ = g00(dx
0)2 − gij dxidxj . For classical mechanics, the time

can be separated from the space. Owing that x0 := t , this gives the only non zero
coefficients, and curvatures

Γ i00 :=
∂U

∂xi
, �ij00 = −�i0j0 =

∂2U

∂xi∂xj
(4.13)

with all other components are vanishing. This confirms that for a free particle
motion, if components �ij00 are equal to zero, then the curvature tensor vanishes
everywhere e.g. Shen and Moritz (1996). We have two interpretations of the particle
motion. The first is a description of the motion under the action of force field (as
potential gradient) in a flat Minkowski spacetime. The second description considers
a particle moving along a geodesic line in a Riemannian spacetime with curvature
�ij00 �= 0. This illustrates the equivalence principle of Einstein. In the next chapter,
we will consider the problem of the geodesic deviation defined by the acceleration
of separation of two nearby material points with a gravitational field.

Remark 4.4 The explicit separation of the metric and the connection is worth
in Newtonian gravitation theory. The curvature that bends the spacetime can not
expressed in terms of metric tensor which is assumed uniform over the entire
spacetime. The geometry of the space (hyperplane) for fixed x0 is Euclidean. The
curvature may rather be directly obtained from the affine connection derived from a
scalar potential U(xμ) e.g. Ehlers (1973), Havas (1964). This is one of the reasons
why Einstein–Cartan gravitation theory should be considered as the natural exten-
sion of the Newtonian gravity, rather than the Einstein relativistic gravitation theory.

In a flat spacetime let assume the existence of an inertial frame characterized
by zero affine connection Γ γαβ (x) ≡ 0 with α, β, γ = 0, 1, 2, 3 where index 0
corresponds to time coordinate. Consider again the set of internal transformations
defined by:

y0 := y0(x0, x1, x2, x3), yi := yi(x1, x2, x3)

where Latin indices hold for (1, 2, 3), and Greek indices for (0, 1, 2, 3). The
connection coefficients Γ̃ γαβ (y

μ) associated to this new coordinate system {yμ} are
given by:

Γ̃ 0
αβ = J 0

λ A
λ
αβ, Γ̃ i0β = 0, Γ̃ ijk = J i� A�jk (4.14)
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with the same notation as for the change of coordinate (J γλ := ∂yγ /∂xλ, and
A�αβ := ∂2x�/∂yα∂xβ ). Then previous Eq. (4.14) shows that the vanishing of

components Γ̃ i0β(x
μ) ≡ 0 represents a necessary and sufficient condition for

the coordinate system (xμ,μ = 0, 1, 2, 3) to define an inertial frame of reference
Krause (1976). Physical forces (either “external” or those due to acceleration of
the relativistic frame of reference) are associated to the deviations from the affine
geodesics. Particularly, if it happens that a frame is accelerated with respect to
an inertial frame of reference (flat), there is no internal transformations able to
eliminate all the components of the connection. Therefore, the difference between
classical and relativistic mechanics lies upon the characteristics and properties of
the affine connections linking microcosms e.g. Duval and Kunzle (1978). Newton
calls gravitation what Einstein called curvature of spacetime. For relativistic gravity
theory, gravitation is a property of the curvature of spacetime and is not an “external”
forces.

Remark 4.5 Equation (4.13) when particularlyΓ i00 ≡ 0 may be related to Eq. (4.14)
in classical mechanics (inertial frame in Galilean mechanics when gravitational
fields is missing).

4.2.2.2 Newton–Cartan Spacetime

In the absence of gravitation, the spacetime of Newton physics may be described
by a metric gαβ := diag {0, 1, 1, 1}, a vector τα := (1, 0, 0, 0), and a symmetric
affine connection Γ γαβ , such that the metric is orthogonal to the vector τα. Metric

compatibility of the connectionΓ γαβ and of the vector τα , together with the vanishing
of the curvature induce that there exists a family of coordinate system such that
Γ
γ
αβ ≡ 0, identified with the so called reference frames e.g. Goenner (1974).

Conversely to Galilean structure, in the formalism of Newton–Cartan, we have seen
that the curvature cannot be equal to zero because of gravitation. The spacetime of
Newton–Cartan physics is as usual described by a symmetric tensor gαβ , a 1-form
τα, and a symmetric affine connection Γ γαβ as for Galilean structure but satisfying
the relationships e.g. Dixon (1975):

⎧
⎪⎨

⎪⎩

gαβ τβ = 0
∇γ gαβ = 0 and ∇ατβ = 0

gβσ�δασγ = gδσ�βγ σα
(4.15)

The first line expresses the orthogonality condition of the space and time, the
second the metric compatibility of the connection, and the third line means that
gravitation forces exist (the curvature is not equal to zero). This structure has been
developed by Duval et al. (1985) where they have used a extended five-dimensional
spacetime together with Bargmann group of invariance which is an extension of
the Galilean group. The Bargmann group plays in Newtonian mechanics the same
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role as Poincaré group invariance in special relativity. Finally, the set of Eqs. (4.26)
and (4.15) constitutes the complete fields model resulting from a spatio-temporal
distribution of matter density ρ(xμ). Let now consider some discrete material points
in motion within a Newton–Cartan spacetime. The classical equations of motions
(see later (4.26)) keep the same shape under the Galilean group of transformations:

y0 = x0 + ξ0, yi = J ij xj + vi x0 + ξ i (4.16)

where x0 := t , J ij is a constant group element of SO(3) (isotropy of space),

vi a three-dimensional vector of the space (allowing us to define inertial frames
from Galilean transformations), and ξα a four dimensional vector of the spacetime
(homogeneity of space). The set of these transformations constitute a Lie group and
provide the 10-parameter Galilean Lie group (Fig. 4.3). Now consider, as example,
the motion of particles P(p) of mass mp evolving with respect to an inertial frame
and defined by the Lagrangian function (Rosen 1972):

L (x(p), ẋ(p), t) :=
N∑

p

mp

2
‖ẋ(p)‖2 − U

(
x(p), t

)
, U :=

N∑

p<q

Gmp mq

‖x(p) − x(q)‖
(4.17)

in which x(p) denotes the Cartesian coordinates of the particle p, and G the
gravitation constant. The first term of Lagrangian (4.17) represents the kinetic
energy. The dot denotes derivative with respect to x0 := t . Relations (4.13)
and (4.17) allow us to calculate the field of connection of the spacetime Γ γαβ(x

μ).
The form of the Lagrangian function is invariant under the Galilean group of
transformations but only in the particular case vi ≡ 0. When vi �= 0 in the Galilean

Fig. 4.3 Newton–Cartan spacetime. The Galilean group includes the uniform translation charac-
terized by the constant velocity v, the constant displacement a, the shift of the time origin t0, and the
three angles α for changing the orientation of the spacetime then from G0 to G , say (vi , ξ i , ξ0, J Ij )

according to Eq. (4.16). The invariance with respect to this group induces the gauge invariance.
The presence of the body of mass M generates changes the Newton spacetime to Newton–Cartan
spacetime with gravitation by creating a potential field U from which the force F on test mass m is
derived. Newton–Cartan connection and curvature are thus calculated by means of Eq. (4.13), for
which the covariance (directly) leads to a dependence only on curvature �̂αβ after Eq. (4.13)
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group of transformations (4.16) the Lagrangian takes the form of:

L ′ = L + d

dt

[
N∑

p

mp

(
v · ẋ(p) + (1/2)‖v‖2t

)]

(4.18)

(owing that x0 := t). It shows that this Lagrangian function is not covariant. The
Euler–Lagrange equations of this set of particles have exactly the same shape for
these two forms of Lagrangian (particular case of Eq. (4.26)), say (Newton’s law of
gravitation):

d2x(p)

dt2
+G

N∑

q �=p

mq (x(p) − x(q))
‖x(p) − x(q)‖3

= 0 (4.19)

where the second term is the superposition of many vectors (the continuous version
is also displayed on the right where x and x′ are associated to the test mass point
position and the mass distribution respectively, and dm′ := ρ(x′)ωn(x′) is the
continuous element of mass which engenders the gravitation):

Fp := −G
N∑

q �=p

mq (x(p) − x(q))
‖x(p) − x(q)‖3

, F = −mG
∫

M

x− x′

‖x − x′‖3 ρ(x
′)ωn(x′)

This is the total gravitational force on the point mass mp at x(p) due to the set of
many discrete points {mq, x(q)}. In Newtonian mechanics, the mass mp itself does
not produce self-gravitation conversely to relativistic gravitation. This illustrates the
difference between change of (space)-coordinates, and change of frame of reference.
This later is related with the gauge invariance rather than with covariance. This
example illustrates the two concepts of invariance we are dealing with in the present
paper. We therefore can say that the Lagrangian is gauge-invariant (despite the
additional time derivative) under a 10-parameter Galilean Lie group. Hereafter, we
consider covariance and gauge invariance applied to both spacetime and material
manifolds.

The most known example is the two-bodies problem with two particles of
masses m1 and m2 subject to only forces of their mutual interaction (4.17). For
this particular case, we have:

L = m1

2
‖x(1)‖2 + m2

2
‖x(2)‖2 − Gm1 m2

‖x(1) − x(2)‖ (4.20)

Classically, introduction of the mass center and the relative position allows us to
simplify the problem and define the Lagrangian as:

L = M

2
‖Ẋ‖2 + m

2
‖ẋ‖2 − GMm‖x‖ (4.21)
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with the total mass, the reduced mass, the mass center position, and the relative
position respectively:

M := m1+m2,m := m1m2

m1 +m2
,X := m1x(1) +m2x(2)

m1 +m2
, x := x(2)−x(1) (4.22)

The motion of mass center is a straight line with a constant velocity (it may be
easily proven by deriving the Euler–Lagrange equations and by observing that the
potential does not depend on the variable X. By choosing a spherical coordinate
system (r, θ, ϕ) centered at the mass center, the Lagrangian holds:

L = m

2

(
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

)
−U (r), U := −GMm

r

and by observing that the azimuthal angle ϕ is an ignorable coordinate say ∂ϕL =
0, the Lagrangian takes the form of:

d

dt

(
∂L

∂ϕ̇

)
= 0 �⇒ �0 := ∂L

∂ϕ̇
�⇒ L = m

2
ṙ2 + �2

0

2mr2 +G
Mm

r
(4.23)

by assuming that the (invariant) angular momentum �0 is along the z axis at the
time t = 0 (θ = π/2 �⇒ θ̇ = 0). Indeed, since the angular momentum is always
perpendicular to x and ẋ, the motion of the fictitious point x is always in a plane
perpendicular to the invariant angular momentum. Further simplification may be
thus done by writing the conservation of the energy:

E0 := m

2
ṙ2 + �2

0

2mr2 −G
Mm

r︸ ︷︷ ︸
effective potential

= Cst (4.24)

The tridimensional problem reduces to a one-dimensional one by considering the
motion of the mass center with a reduced mass m, and subject to an effective
potential in place of the Newtonian potential. Classical solutions of this problem
allow us to analyze the various conic orbits either closed (elliptic) and open as
parabolic and hyperbolic. The Kepler laws of planets are obtained accordingly e.g.
Ryder (2009).

4.2.2.3 Newtonian Gravitation in Presence on ContinuumMatter

We previously introduced the vacuous Newtonian spacetime by means of the
contravariant metric ĥαβ , the covariant vector τ̂α, and the symmetric connection
Γ̂
γ
αβ . A zero curvature �̂γαβλ ≡ 0 ensures a flat spacetime and the existence of

inertial frames of references. In the presence of gravitation, covariant formulation
of the Newtonian gravitation was first developed by Cartan to give the following
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relations e.g. Dixon (1975):

�̂αβ = 4πGρ τ̂ατ̂β, ĥγ σ �̂δαβσ = 0, ĥγ σ �̂δασλ = ĥδσ �̂βλσα (4.25)

with the Ricci tensor �̂αβ of the curved spacetime due to the presence of matter
with density ρ(x). The raising of indices is not reversible since the metric is singular
(and thus not invertible). The concept of the inertial frames of reference is cautious
(inertial spacetime) and exists if only the curved spacetime is asymptotically flat.
The set of Eq. (4.25) constitute a viable extension of the Newtonian theory of
gravitation e.g. Dixon (1975). The uniqueness of this set of equations to describe
Newtonian gravitation as a manifestation of the spacetime geometry, without
restrictions on the mass density was shown by using the representation theory
of general linear and orthogonal groups of transformations. We will give explicit
examples of wave propagation within non homogeneous continuum in the last
section of this paper. By calculating the Ricci curvature from contraction, we arrive
to the classical Poisson equation for Newtonian gravitation �00 := ΔU = 4πGρ
where ρ. Both Newtonian and relativistic gravity involve a privileged state of motion
represented by affine connections in a four dimensional spacetime manifold e.g.
Bernal and Sanchez (2003), Dixon (1975), Kadianakis (1996), Krause (1976). In
sum, Newtonian gravity consists of two equations. The first comes from Newton’s
law of gravity as previous developed, whereas the second derives from the Newton’s
second law of motion (local Inertia Principle):

ΔU = 4πGρ,
d2xi

dt2
= −∇iU (4.26)

where the Laplacian Δ and the gradient ∇ operators are obtained by using the
Euclidean spacetime connection (torsionless and non curved manifold). Considering
a spherical continuum matter, the gravitational potential U := (GM)/r is solution
of Eq. (4.26a). The second equation (4.26b) describes how a material point (whose
gravitational effects can be neglected) moves in the gravitational field provoked by
the sphere. In the framework of classical mechanics limit, the geodesic equation
and the Einstein’s equations tend to the equations of Newton gravity, and to the
Newton’s second laws of motion (Fundamental Principle of Dynamics).

Remark 4.6 In a Newtonian–Cartan gravitation, let consider a body B of mass m
immersed within an field of gravitation with total potential UT . The body B itself
has itself a gravitation potential UB . Let define the “free fall” of the center of mass
as the motion induced by the potential U := UT − UG. Then the difference of
the acceleration experienced by the center of mass and the “free fall” acceleration
is bounded by the size of B and the variation of external field ∇∇U. Ehlers and
Geroch have shown the extension of this theorem for relativistic gravitation in Ehlers
and Geroch (2004).

For illustrating the fundamental solution of the gravitational field in Newtonian
mechanics, let consider the gravitation field generated by a massive point m > 0
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et let solve Eq. (4.26) assuming a spherical symmetric problem. In some sense, we
give support for the shape of the potential energy in the Lagrangian (4.17). For a
material point, the field equation (4.26) holds:

ΔU = 4πGm δ(x)

Integrating over a sphere B of centerO and radius R, we have:

∫

B
4πGm δ(x)dv = 4πGm =

∫

B
∇ · (∇U) dv =

∫

∂B
∇U · nda

Since the problem is spherically symmetric, the potential takes the form of: U =
U(r). Then we deduce:

4πGm = U ′(R)A = 4πR2U ′(R) �⇒ U ′(R) = G m
R2

This is valid for any value of R, then, the Newton potential for gravitation of a
material point of mass m, and the linear momentum equation of a mass M in the
gravitational field of m, are given by:

U = −Gm
r
, Ma := −M∇U = −GMm

r3 r (4.27)

where we have assumed that the potential vanishes for r → ∞, and r denotes the
vector position of mass M with respect to the origin where the attractive mass m is
situated.

Remark 4.7 The second equation of (4.27) indeed expresses the idea of Newton’s
Universal Law of Gravitation. It states that any two objects of mass M and m exert
a gravitational force of attraction on each other (here M is attracted by m). The
direction of the force is along the line joining the two objects. The magnitude of the
force |F‖ is proportional to the product of the gravitational masses M an m of the
objects, and inversely proportional to the square of the distance r between them.

4.2.3 Matter Within Torsionless Gravitation

Let us consider a torsionless but curved spacetime manifold (M , g,∇) which
is slightly more general than the Newton–Cartan spacetime. Such a model is
considered as a “structureless continuum” if the torsion vanishes. The spacetime
structure is summarized by the Riemannian spacetime structure with the metric
gαβ(xμ), the torsion ℵγαβ , and the curvature�δασγ (xμ):

∇γ gαβ = 0, ℵγαβ ≡ 0, �δασγ �= 0 (4.28)
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The Lagrangian function L (g,∇,∇∇) depends on the metric, the connection and
the bi-connection in the general case. We consider first the corollary of covariance
theorem by considering Levi-Civita connection. Under the same hypothesis as for
the Theorem 3.6, we have the corollary:

Corollary 4.2 On Riemannian manifold, there does not exist a covariant scalar
field L (form-invariant) which depends on the metric g and the Levi-Civita
connection ∇, say L (g,∇).
Proof According to the Theorems 2.1 and 3.6: L (g,∇) = L (g,ℵ = 0) = L (g).

��
Corollary 4.2 can be proven by using components formulation. Indeed, the coeffi-

cients of Levi-Civita connection are Christoffel symbols Γ
k

ij (2.41) which depend
on the metric components and their first partial derivatives e.g. Nakahara (1996).

According to Theorem 3.5: L (gij , Γ
k

ij ) = L (gij , ∂kgij ) = L (gij ). It may be
related to the existence of local inertial frame of reference in general relativity—
with Riemannian spacetime—where the coefficients of the connection may be set to
zero in a normal coordinates system (strong equivalence principle e.g. Knox 2013).
This also conforms to results obtained by Lovelock (1971) where the Lagrangian

density L (gij , ∂kgij , ∂l∂kgij ) with a Levi-Civita connection Γ
k

ij , operating on the

manifold, leads to the modified gravity Lagrangian density LG(gij ,�kij l) e.g. indi-
rectly Cartan (1922), or directly Exirifard and Sheikh-Jabbari (2008). The relevant
connection for Einstein relativistic gravitation is the Levi-Civita connection, with
a non zero curvature describing the gravitational field. Moreover it constitutes the
only Lorentz connection with zero torsion.

Remark 4.8 In continuum mechanics, further extension consists in using an affine
connection which does not derive from a metric but compatible, and thus to
introduce torsion and/or curvature to describe the dislocations and disclinations
field e.g. Maugin (1993), Rakotomanana (2003). Although commonly adopted for
modeling continuum, Levi-Civita connection ∇ is not worth in such a framework.

4.2.3.1 Einstein’s Field Equation

Let consider a Lagrangian L (gαβ, Γ
γ

αβ, ∂λΓ
γ

αβ) corresponding to the Einstein–
Hilbert action of classical relativistic gravitation e.g. Sotiriou and Faraoni (2010):

SG := (1/2χ)
∫

R
√

Detg dx0 ∧ · · · ∧ dx3 (4.29)

where R is the scalar curvature. The constant factor is introduced to reproduce the
classical mechanics of Newton when some matter is moving within this vacuum
spacetime. For the variational formulation we introduce the metric variation gαβ →
gαβ + δgαβ (corresponding to the Eulerian variation of the metric at a fixed point of
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the spacetime). A straightforward calculus gives the variation of the connection and
the Ricci curvature (we omit bar overline for connection and curvature for the sake
of the notation simplicity):

δΓ
γ
αβ = (1/2) gγλ

(∇βδgαλ +∇αδgλβ −∇λδgαβ
)

(4.30)

δ�αβ = ∇λ(δΓ λβα)−∇β(δΓ λλα) (4.31)

where the covariant derivative is related to the unperturbed (metric compatible)
connection. The equation of (4.31) is known as Palatini identity, showing that for
torsionless continuum the variation of the Ricci tensor may be transferred to the
boundary condition terms via the divergence theorem. Now we are concerned to
derive the field equations. Notice χ := 8πG/c4. By writing the variation:

δLG = (1/2χ)
[
δ
(√

Detg
)
gαβ�αβ +

√
Detgδgαβ�αβ +

√
Detg gαβδ�αβ

]

where we have, thanks to the Palatini identity and the metric compatibility of ∇:

√
Detg gαβ δ�αβ =

√
Detg

[
∇λ
(
gαβδΓ λβα

)
−∇β

(
gαβδΓ λλα

)]

Integrating the divergence-like terms under brackets along the manifold boundary
gives a zero term. Since δ

(√
Detg

) = −(1/2) √Detg gαβ δgαβ , the principle of
least action δSG ≡ 0 for arbitrary variation of the metric gives the Einstein field
equation of the general relativity e.g. Cartan (1922) (GR):

Gαβ := �αβ − (1/2) R gαβ = 0 (4.32)

which is the vacuum fields equation, the Euler–Lagrange equations associated to
the Einstein–Hilbert action. Metric components gαβ(xμ) are the unknown variables
in this field equation. To this end, given a curvature field �γαβλ(xμ) on a metric
manifold M , determination of the 10 metric components gαβ(xμ) needs integration
of system of 20 second-order partial differential equations. For this to be possible,
additional integrability must be satisfied for third-order derivatives of metric
components assuming that they are C3. These conditions are the Bianchi identities
e.g. Lovelock and Rund (1975), Nakahara (1996).

Remark 4.9 First, the derivation of the field equation of general relativity, is
obtained accounting that the variation of the connection δΓ γαβ is shifted to the
boundary by means of the divergence operator. Second, contrarily to the wave
equation (2.13), the Einstein’s gravitational equations are invariant under the group
of (passive) diffeomorphisms (covariance), and not only for the group of Lorentz
transformations. Under an arbitrary change of coordinate x̃α = x̃α(xμ), the same
shape of equations is obtained to give exactly G̃αβ = 0.
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4.2.3.2 Example: Schwarzschild Spherical Symmetric Spacetime

The most known example of spherical symmetric solution of vacuous spacetime
is the Schwarzschild spacetime. It is a good approximation of gravitation field pro-
duced by static spherically symmetric body at rest. The static condition imposes that
the metric components ∂0ĝμν ≡ 0 are independent of time coordinate x0. The time
reversal independence x0 → −x0 also induces that all off-diagonal terms vanish,
ĝ0i = ĝi0 ≡ 0. Without going in details, proofs are available in classical textbooks
e.g. Ryder (2009). The covariant components of the metric hold in the spherical
coordinate system (x0, r, θ, φ): ĝμν = diag

{
e2f (r),−e2g(r),−r2,−r2 sin2 θ

}
in

which the two unknown functions f (r) and g(r) may be found by means of the
vacuum equations �̂μν ≡ 0. From the expression of the Christoffel symbols and
then the associated Ricci curvature, we obtain first f (r)+g(r) = 0, and by imposing
that the field of gravitation approaches the Minkowski space time at the infinity
(r →∞), we get the Schwarzschild metric:

ĝμν = diag
{
(1− 2m/r) ,− (1− 2m/r)−1 ,−r2,−r2 sin2 θ

}
(4.33)

with 2m := 2MG/c2 a constant called Schwarzschild radius. The details of the
proof will be reminded in the Chap. 6 to obtain the metric (6.97). This solution
holds for spacetime outside a body of (total) gravitating mass M . It conforms to
the Newtonian spacetime where the distribution of mass inside the gravitating body
does not play keyrole, only the total mass matters.

Remark 4.10 (Laplace “Black Hole”, 1798) The Schwarzschild radius was
observed by Laplace in the context of Newtonian gravitation. Considering particle
of mass m moving at the light speed c, then with a kinetic energy mc2/2, the
particle will not escape from the attraction of a massive body M with a Newtonian
potential mGM/r if potential is greater than the kinetic energy. This implies that
R > 2GM/c2 e.g. Ryder (2009).

Remark 4.11 It was stated (Birkhoff theorem, 1923), see the book of Birkhoff
and Langer (1923) that, even for dynamic metric, the Schwarzschild spherical
metric is the only symmetric asymptotically flat spacetime solutions of Einstein’s
vacuum equations. A consequence is that no gravitational waves can occur from
spherical pulsation of stars. Another consequence of Birkhoff’s theorem is that
for a spherically symmetric thin shell (matter which is source of gravitation), the
interior spacetime must be Minkowskian with metric gμν := diag{+1,−1,−1,−1}
meaning that the gravitational field must vanish inside a spherically symmetric shell.

The physics of black holes comes from the apparent singularity at r = 2m.
We observe that the signature of the metric is different inside (−,+,−,−) and
outside (+,−,−,−) the critical radius rc = 2m. Eddington and Finkelstein
introduced (separately) a new coordinate system by defining a time coordinate
dt = dt + 2m dr/[c(r − 2m)], and suggested the metric components in the
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Eddington-Finkelstein coordinate system (x0 := ct, r, θ, φ):

ĝμν =

⎡

⎢
⎢
⎣

(1− 2m/r) 4m/r 0 0
4m/r − (1− 2m/r) 0 0

0 0 −r2 0
0 0 0 −r2 sin2 θ

⎤

⎥
⎥
⎦ (4.34)

This ranges the radial coordinate solution for 0 < r <∞. Other coordinates system
may be found in the literature e.g. Ryder (2009).

Remark 4.12 For either Schwarzschild or Eddington-Finkelstein metrics, the phys-
ical importance of this singularity radius may be neglected for some practical
situation. For example, the mass of the Sun isM � 1.99×1030[kg], giving the radius
m := rS � 1500[m], showing that the Schwarzschild spherical surface of radius rS
is inside the Sun itself. Therefore, for regions outside the Sun at r > 6.96×108[m],
the vacuum solutions hold.

Remark 4.13 The metric (4.33), due to Hilbert, is not the original Schwarzschild
solution which was calculated for a mass-point situated at the origin r = 0. The
generalized Schwarzschild metric takes the form of:

ĝμν = diag
{
(1− 2m/R(r)) ,− (1− 2m/R(r))−1 ,−R(r)2,−R(r)2 sin2 θ

}

(4.35)

where R(r) := [
r3 + r3

0

]1/3
and r0 is an integration constant obtained from

boundary condition on the functionR(r). The Hilbert version and the Schwarzschild
original solution are obtained for r0 = 0 and r := 2m respectively. Conversely to
the Hilbert version, the original solution adapted for mass-point at the origin does
not present singularity except for r = 0. The two versions are independent which
means that there is no coordinate transform that can reduce one each other.

4.2.3.3 Example: Robertson-Walker Isotropic and Homogeneous
Spacetime

The most known metric tensor underlying cosmological spacetime C is that of
Robertson-Walker. The metric must account for the fundamental principle of
cosmology: isotropy and homogeneity. The cosmological model are based on
the assumptions:

• the spacetime C can be sliced into hypersurfaces (spaces) of constant time which
are homogeneous and isotropic;

• there is a mean rest frame of all the galaxies that agrees with this definition of the
simultaneity.

The spacetime C was developed to account for the expansion of the universe—the
change of proper distance between galaxies—by means of the dependence of all
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components of the metric on the variable time. On the one hand, to ensure that all
metric components increase at the same rate, the line element of the space may be
written as:

d�2 = a2(x0)gij dx
idxj

On the other hand, the possibility of slicing (first assumption) allows us to separate
the time and the space to obtain the following shape of the line element:

ds2 =
(
dx0
)2 − a2(x0)gij dx

idxj

owing that the cross-components must vanish g0i ≡ 0, i = 1, 2, 3 to satisfy the
isotropy of the spacetime, or in other words to preclude the existence of privileged
direction ei . The isotropy allows us also to assume that the metric has spherical
symmetry about the origin of coordinates, which can be chosen at any point of C .
Accordingly the space line element should take the form of:

d�2 := e2λ(r)dr2 + r2dθ2 + r2 sin2 θdϕ2 (4.36)

where only the component grr may depend on the radius r by means of the scalar
function λ(r). To ensure the homogeneity of the spacetime it is necessary that
the Ricci curvature of the three-dimensional space has the same value at every
space point. A straightforward calculus gives the three non zero components of the
Einstein tensor:

Grr = 1

r2
e2λ(r)

(
1− e−2λ(r)

)
, Gθθ = rλ′(r)e−2λ(r), Gϕϕ = sin2 θ Gθθ

(4.37)

The homogeneity of the space means that the trace of Einstein tensor (space part)
is constant:

TrG := gijGij = 1

r2

(
1− (re−2λ(r))′

)
= G0 (4.38)

The integration of this differential equations gives the solution:

grr = e2λ(r) = 1

1− kr2 −H/r (4.39)

where H is a constant of integration, and k := G0/3 is the conventional curvature
constant. Requirement of local flatness at the origin r = 0 induces H = 0. It
can then be checked that the spacetime metric, denoted Robertson-Walker metric,
obtained from this space metric is isotropic and homogeneous. The corresponding
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line element holds e.g. Ryder (2009):

ds2 :=
(
dx0
)2 − a2(x0)

(
dr2

1− kr2 + r2dθ2 + r2 sin2 θdϕ2
)

(4.40)

where the curvature k may be positive, negative or zero. For k = 0, we obtain
the flat Robertson-Walker spacetime. For k > 0, the model is called closed or
spherical Robertson-Walker spacetime, and finally for k < 0, the spacetime is open
or hyperbolic.

4.2.3.4 Cosmological Constant and (Anti)-de Sitter Spacetime

It is well known that the concept of dark energy, together with that of the dark matter,
is not described by the Einstein’s general relativity with the field equation (4.32).
The accounting of the dark energy allows us to include the accelerated expansion
of the universe, discovered by Hubble, by adding a cosmological constant Λ e.g.
Padmanabhan (2003), Ryder (2009). The value of this cosmological constant is very
low with respect to human length scale Λ �≤ 10−52[m−2]. The Einstein–Hilbert
action becomes

SEHH := (1/2χ)
∫
(R− 2Λ)

√
Detg dx0 ∧ · · · ∧ dx3 (4.41)

where the integration goes over the entire spacetime M with metric g. As
previously, the variation of the action SEHH with respect to the metric leads to
the equation:

ΔSEHH := (1/2χ)
∫ (

�αβ − R

2
gαβ +Λ gαβ

)√
DetgΔgαβdx0∧· · ·∧dx3 = 0

where we dropped the boundary terms that are assumed to vanish for the sake of the
simplicity. We deduce the associated field equation allowing us to take into account
the universe expansion:

Gαβ +Λ gαβ := �αβ − (1/2) R gαβ +Λ gαβ = 0 (4.42)

The cosmological constant Λ is sometimes associated to “dark energy” of the
universe and constitutes a new constant of the general relativity. From mathematical
point of view, this constant may be positive or negative leading to de Sitter
spacetime and to Anti-de Sitter spacetime respectively. The maximally spherical
symmetric solutions of the field equation (4.42) gives the Schwarzschild-(Anti)-de
Sitter metric:

ds2 =
(

1−2m

r
−Λ

3
r2
)
(dx0)2−

(
1− 2m

r
− Λ

3
r2
)−1

dr2−r2dθ2−r2 sin2 θdϕ2

(4.43)



122 4 Gauge Invariance for Gravitation and Gradient Continuum

where the mass m is located at the origin of the coordinate system, and we observe
again that the metric is stationary. Let consider the (Anti)-de Sitter spacetime with
m = 0. By defining the length � := √3 |Λ|, we rewrite the metric (4.43) as:

ds2 =
(

1± r
2

�2

)
(dx0)2 −

(
1± r

2

�2

)−1

dr2 − r2dθ2 − r2 sin2 θdϕ2 (4.44)

When the radius takes the particular value r = � then there is degeneracy of the
metric in the case of de Sitter metric, this value is denoted the horizon of the
de Sitter spacetime. No degeneracy is observed for the Anti-de Sitter metric. We
will investigate latter the influence of the torsion in the derivation of the spacetime
metric. In the next following let consider some examples of matter within a curved
(with gravitation) but spacetime without torsion.

Remark 4.14 Let us consider the action S including that of the spacetime M and
that of some matter B evolving within the spacetime and write:

ST := SST +SM = c4

16πG

∫

M
(R− 2Λ)ωn +

∫

B
LMωn

win which we can assume that the domain of integration are the same M =
Bwithout losing the generality of the purpose. Therefore we can group the
cosmological constant with the matter to give:

ST := SST +SM = c4

16πG

∫

M
R ωn +

∫

M

(
LM − c4

8πG
Λ

)
ωn

Of course the variation of this action with respect to the spacetime metric exactly
leads to the Einstein field equation with the cosmological constant term. The
physical interpretation might be slightly modified to consider the Lagrangian
LM − c4Λ/8πG as a new Lagrangian including the cosmological term attributed
as the Lagrangian of the “dark matter”.

4.2.3.5 Dust Matter

The simplest example of matter would be the dust defined by the LagrangianSM :=
− ∫ ρc√uμ uμ ωn e.g. Dirac (1974). This action is the analogous of the kinetic
energy for non relativistic mechanics. We use temporarily the coordinates (x0 :=
t, x1, x2, x3). When considering matter which is assumed reasonably to interact
with gravity field through the energy-momentum tensor, this Lagrangian furnishes
the equations of motion of the dust matter in the gravitation spacetime:

�αβ − (1/2) (R− 2Λ) gαβ = (8πG/c4) ρ uαuβ
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where the presence of the stress-energy tensor in the right hand side of the equations
is merely due to the variation of the action of the “dust” due to the variation of the
spacetime metric. For dust matter evolving within a curved spacetime, the action
finally takes the form of:

S := c4

16πG

∫

M
R ωn −

∫

M
ρc
√
uαuα ωn (4.45)

where the integration is defined on the spacetime M . The first term in Eq. (4.45)
represents the spacetime gravitation whereas the second one defines the dust matter
action, according to Dirac. We remind that ωn := √Detg dx0 ∧ dx1 ∧ dx2 ∧ dx3

and dx0 := dt . To derive the field equation, it is worth to define the 4-momentum
density as pα := ρuα√Detg. This allows us to rewrite the action:

S := c4

16πG

∫

M
R
√

Detg dx0 ∧ dx1 ∧ dx2 ∧ dx3

−
∫

M
c

√
gαβpαpβ dx

0 ∧ dx1 ∧ dx2 ∧ dx3

(remind that gαβ are components of the spacetime metric tensor). The variation of
the action with respect to the metric leads to the field equation of dust:

�αβ − (1/2)R gαβ = (8πG/c4) ρ uαuβ (4.46)

where we remind the stress-energy tensor as:

Tαβ := − 2√
Detg

∂

∂gαβ

(√
DetgLD

)
= ρ uαuβ

where LD being the dust Lagrangian function. For more details on dust matter,
the energy-momentum for dust is given by the (2, 0) type tensor (contravariant
components) T αβ := ρ0 u

αuβ where ρ0 is the mass density in a rest frame. We
respectively obtain the components:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T 00 = ρ0u
0u0 = ρ (energy density)

T 0i = ρ0u
0ui = ρ0

1

c2

dx0

dτ

di

dτ
= ρ v

i

c
(momentum density along i)

T ij = ρ0
1

c2

dxi

dτ

dxj

dτ
= ρ v

ivj

c2 (generalized stress tensor)

(4.47)

where ρ is the mass density in a moving frame. For non-relativistic situation where
c >> vi the dominant component is the term T 00 = ρ � ρ0, which is the matter
density in space. A classical approach to obtain equations of motion for dust, we
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remind the basic steps as follows:

δS = δ
(

c4

16πG

∫

M
R ωn −

∫

M
ρc
√
uαuα ωn

)

which leads to the following variation, by dropping all terms of boundary conditions,

δS =
∫

M

c4

16πG

(
�αβ − R

2
gαβ
)
δgαβ ωn −

∫

M

ρ

2
uαuβ δgαβ ωn + B.C. terms

where “B.C.” holds for boundary conditions. We remind that gαβ are components of
the spacetime metric in this previous equation. Now if we introduce the “variation”
δgαβ = ∇αξβ +∇βξα , we obtain the equations of motion:

∇β
[(�αβ − (R/2) gαβ)− (8πG/c4) ρuαuβ

]
= 0 (4.48)

In fact, the Lagrangian formulation based on the previous action is not the unique
possibility to derive the dust motion within a relativistic gravitation spacetime. Such
is the case for dust with viscous dissipation effects although is not always possible
to include dissipative action in a Lagrangian function. It should be remarked that the
four-dimensional vector uα , according to Eq. (2.77), stands for velocity with respect
to proper time (2.76) and not for displacement vector.

Remark 4.15 Without difficulty, the extension of the previous equations to matter
within a (torsionless) relativistic gravitation takes the form of:

∇β
[(�αβ − (R/2) gαβ)− χ T αβ] = 0 (4.49)

where the first terms expresses the gravitation field (spacetime bending) whereas
the second one gives the matter contribution (corresponding to stress for classical
continuum mechanics).

In the framework of relativistic gravitation without torsion, we can remind the
Bianchi identity to show that e.g. Ryder (2009):

∇β
[(�αβ − (R/2) gαβ)] ≡ 0 (4.50)

We deduce the well-known generic equations of motion for matter in a spacetime
with gravitation: ∇β

(
χ T αβ

) = 0. Provided that the χ is uniform, we arrive at the
conservation laws for dust (and more precisely dust-fluid):

∇βT αβ = 0 �⇒
{
(∇αρ) uα + ρ∇αuα = 0

uβ∇βuα = 0
(4.51)

which are the classical continuity equation and the geodesic equation, respectively.
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Remark 4.16 In the non relativistic approximation we expect to recover the classi-
cal conservation laws. Here for α = 0 we obtain the mass conservation:

∇0T
00 +∇iT 0i = (1/c) ∂tρ + (1/c) ∇i (ρvi ) = 0 �⇒ ∂tρ + div(ρv) = 0

(Euler description). For α = i, we obtain the conservation of linear momentum:

∇0T
i0 + ∇j T ij = (1/c)∂t(ρvi/c))+ (1/c2)∇j (ρvivj )

= 0 �⇒ ∂t (ρv
i )+ div(ρviv) = 0

The four equations are appropriate for dust matter on which no external forces act
and furthermore the particles have non self interactions.

4.2.3.6 Perfect Barotropic Fluid

For perfect fluids, the same developments hold e.g. Taub (1954). For the particular
case of barotropic fluid such as in Minazzoli and Karko (2012), the fluid action
together with gravity is defined by Schutz (1970):

S := c4

16πG

∫

M
R ωn −

∫

B
ρ

(
c2 +

∫
P(ρ)

ρ2 dρ

)
ωn (4.52)

where M is the spacetime and B the continuum matter. Starting from the definition
of the stress-energy tensor, we first remind that for barotropic fluid the variation of
the energy density ρ is given by δρ = (ρ/2) (gαβ − uαuβ

)
δgαβ . Consider that the

stress-energy tensor is derived according to the definition (Eq. (2.80)):

Tαβ = ∂Lf luid

∂gαβ
− Lf luid

2
gαβ

We deduce the component form of the energy-momentum tensor:

Tαβ =
{
ρ
[
c2 +Π(ρ)

]
+ P(ρ)

}
uαuβ + P(ρ)gαβ (4.53)

which is usually considered in celestial relativistic mechanics. Another formulation
may be adopted by defining the following e.g. Poplawski (2009):

ẽ := ρ
[
c2 +Π(ρ)

]
, p̃ := P(ρ) (4.54)

to give a classical form of the constitutive laws of relativistic perfect fluid:

T αβ = (ẽ + p̃) uαuβ + p̃ gαβ (4.55)
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in which ẽ the relativistic rest energy density of the fluid, p̃ is the pressure within
the fluid, uβ is the four-velocity of the fluid, and gαβ is the Minkowski metric tensor
with signature (+,−,−,−). In the scope of torsionless relativistic gravitation,
the covariant derivative of Einstein tensor vanishes ∇βGαβ ≡ 0 e.g. Lovelock
and Rund (1975). This allows us to obtain the conservation laws, by applying the
gauge invariance with δgαβ := Lξ gαβ = ∇βξα + ∇αξβ (see in the next section
for extension of this Lie derivation in the scope of Einstein–Cartan gravitation).
After integrating by parts, the conservation laws of barotropic perfect fluid hold e.g.
Minazzoli and Karko (2012):

∇βT αβ = ∇β
[
(ẽ + p̃) uαuβ + p̃ gαβ] = 0 (4.56)

Distributing the derivative on all terms allows us to write:

∇β
(
ẽ + p̃
n

uα
)
n uβ + gαβ ∇β p̃ = 0

owing that we suppose a metric compatible connection and the conservation of
particles number ∇β(nuβ) = 0 (number of baryons). Let now multiply these
equations with uα . Owing that uα uα = −1, we obtain:

uβ
[
∇βp̃ − n∇β

(
ẽ + p̃
n

)]
= uβ

(
∇β ẽ − ẽ + p̃

n
∇βn

)
= 0

At this stage, we remind the definition of “generalized” time derivative of a tensor
field A in general relativity (in the comoving frame):

dA

dτ
:= ∇βA uβ (4.57)

An alternative formulation of the previous equation is thus obtained (conservation
of energy, without considering entropy,

dẽ

dτ
− ẽ + p̃

n

dn

dτ
= 0 (4.58)

Consider now the remaining other three components of the conservation laws:

n uβ ∇β
(
ẽ + p̃
n

uα
)
+ gαβ ∇βp̃ = 0

For the sake of the simplicity, we work in the momentarily comoving reference
frame (MCRF). Spatial components of the four-velocity ui = 0, i = 1, 2, 3 in
this comoving frame but its covariant derivative does not vanish ∇βui �= 0. Owing
again that the spatial components of the four-acceleration vector is defined as
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ai := uβ ∇βui , the relativistic momentum equation of the perfect barotropic fluid
is deduced:

(ẽ + p̃) uβ ∇βui + giβ ∇βp̃ = 0 �⇒ (ẽ + p̃) ai +∇i p̃ = 0 (4.59)

In the particular case where ‖v‖ << c, we recover the Euler non relativistic fluid
dynamics equations e.g. Rosen (1972):

ρa+∇p = 0, a := v̇+ (gradv) v (4.60)

An extension of variational formulation of relativistic initially proposed in Taub
(1954) including Lagrange parameters takes the form of Poplawski (2010):

S := c4

16πG

∫

M
R ωn −

∫

B
ρ
[
c2 + ε(ρ, σ )

]
ωn

−
∫

B

[
μ1

2

(
gαβu

αuβ − 1
)+ μ2

dσ

dλ

]
ωn (4.61)

where σ is the entropy density of the fluid at rest, and μi, i = 1, 2 are Lagrange
multipliers to ensure the geometrical (normalization of the four-velocity) and the
entropy constraints. ε(ρ, σ ) is the internal energy density per unit mass of the fluid.
For this later action, the relativistic Euler’s equation is given by (see Poplawski
(2009) for details):

(
ρc2 + ρε + p

)
uβ∇βuα −

(
gαβ − uαuβ)∇βp = 0 (4.62)

where the Lagrange multiplier is found to be μ1 = ρc2 + ρε + p (this relation is a
strong compatibility requirement of the proposed action).

Remark 4.17 The Einstein–Hilbert action (4.29) was shown by mathematician
D Hilbert to yield the Einstein field equations through a variational principle
within a Riemannian manifold (with Levi-Civita connection Γ

γ

αβ ). The Ricci scalar
curvature � is the simplest scalar field that can be formed with the metric gαβ and
its first, and second derivatives e.g. Cartan (1922).

4.2.4 Matter Within Curved Spacetime with Torsion

Riemann spacetime is extended to Riemann–Cartan spacetime by considering non
zero torsion. It is known that the test of spacetime with torsion can be only
conducted with particles or continuum with internal structure, such as intrinsic spin
e.g. Hojman (1976), Papapetrou (1951), Puetzfeld and Obukhov (2008) or fluid with
vortices e.g. Garcia de Andrade (2005), Garcia de Andrade (2004). It was shown that
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only intrinsic spin and not global angular rotation of matter couples with spacetime.
Let us consider a curved spacetime manifold with torsion (M , g,∇) with the metric
gαβ(xμ), the torsion ℵγαβ(xμ), and the curvature�δασγ (xμ):

∇γ gαβ = 0, ℵγαβ �= 0, �δασγ �= 0 (4.63)

Again, we omit the “hat” in this paragraph for the sake of the simplicity. In a
Riemann–Cartan spacetime, geodesics defined by connectionΓ γαβ(x

μ) depend on its

symmetric part Γ
γ

αβ+Dγαβ as sketched follows (we assume here a metric compatible
connection). It is different from the geodesics defined by Levi-Civita connection
Γ
γ

αβ . Let first remind the geodesic on a connected manifold M . For Riemann–
Cartan manifold with non zero torsion, Eq. (4.11) is extended by considering an
affine connection ∇ with coefficients Γ γμν . A vector v is parallel transported along
the curve u := x(λ) if v satisfies ∇uv ≡ 0 e.g. Nakahara (1996). A curve of
event of the spacetime M defined by its parametric equation xμ(λ) is a geodesic
if its tangent vector uμ := dxμ/dλ is parallel along the curve, say ∇uu ≡ 0 say
∇uu =

(
uμ∇μuγ

)
eγ = 0 = uμ (∂μuγ + Γ γμνuν

)
. Since λ is the parameter of the

curve, then we have:

uμ := dxμ

dλ
, uμ

∂

∂xμ
= d

dλ
�⇒ d2xγ

dλ2 + Γ γμν
dxμ

dλ

dxν

dλ
= 0 (4.64)

Here geodesics are called auto-parallel curves. Geodesics are extremal curves for
(torsionless) Riemannian manifold whereas auto-parallel curves are extremal curves
for Riemann–Cartan manifold. The definition of the autoparallel curves do not
depend on metric tensor but only on connection. By extension, in the Riemann–
Cartan spacetime (called U(4)), the decomposition Γ γαβ := Γ γαβ +Dγαβ +Ωγαβ (e.g.
Rakotomanana 2005) allows us to have a slightly different conclusion stating that
geodesic lines are changed to auto-parallel lines which are solutions of e.g. Acedo
(2015), Hehl and von der Heyde (1973), Kleinert (2008):

d2xγ

dλ2 + (Γ γαβ +Dγαβ)
dxα

dλ

dxβ

dλ
= 0 (4.65)

obtained from Eq. (4.64) where we observe that only the symmetric (but torsion
dependent) part of the connection is involved. It should be observed that Eq. (4.65)
is sound from a geometrical point of view but its direct relation with physics
does not always exist e.g. Hehl et al. (2013). Its relation with the trajectories
of particles moving within a Riemann–Cartan spacetime is not ensured at a first
sight e.g. Mao et al. (2007). In the framework of general relativity, as initially
introduced by Einstein, we have Dγαβ(x

μ) ≡ 0. For spacetime with torsion, such
is not the case, where the spacetime properties bend the trajectory of the particle
since Dγαβ(x

μ) �= 0 acts as an external force e.g. Kleinert (2008). See Hehl et al.
(2013) and references herein for a review on the chronological list of papers that
investigated the background theory for measuring (by means of elementary particle
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spin) or for the impossibility to measure (by means of a coupling of orbital angular
momentum of some planets) the torsion tensor ℵγαβ e.g. Yasskin and Stoeger (1980).
In addition to the dust, considered as a simple-pole test-particle (Papapetrou 1951),
a rotating particle (pole-dipole) should be considered to analyze the overall motion
of a small size body immersed within a curved spacetime with torsion M e.g.
Papapetrou (1951), Hehl (1971), Shapiro (2002).

Remark 4.18 For body B with finite but relativistically small size, Ehlers and
Geroch have shown that the center of mass of B moves along a geodesic in the
framework of Einstein relativistic gravitation without torsion (Ehlers and Geroch
2004). The theorem they established hold outside regions of singularity and black
holes. The fundamental concept of pole-dipole and more generally the multipole
models in general relativity is mainly based on the expansion of the fields about a
center of mass. The most known model is probably the spinning particle concept
in general gravitation e.g. Papapetrou (1951), and the well-known equations of
Mathisson-Papapetrou-Dixon constitute the basic theoretical model e.g. Leclerc
(2005), Mathisson (1937), Papapetrou (1951). In the scope of continuum mechanics,
the basic ingredients is the assumption of rigid local bases for Cosserat models
of continuum and the section rigidity for Timoshenko beam models and Mindlin-
Reissner plates in the domain of engineering structures e.g. Rakotomanana (2009).
In his fundamental paper on the new mechanics and material systems, Mathisson
proposed in 1937 the concept of gravitational skeleton which the keypoint for
modelling the spinning particle in the motion of (slightly) extended body within
gravitational field (Mathisson 1937). All along this paper, we restrict the modelling
to expansion of the metric to obtain torsion and curvature, instead of introducing a
spin tensor ad hoc, as geometrical arguments of the Lagrangian function.

Basically the dimensions of a test-particle, with or without internal rotation, are very
small compared to a characteristic length which could be taken as the distance from
the central body in the case of Schwarzschild gravitation field (4.33).

4.2.4.1 Equivalence Principle

The equivalence principle is reworded as follows. Given a sufficiently small region
of the spacetime (Riemannian), it is possible to find a reference frame with respect
to whose associated coordinates the metric reduces to Minkowskian metric gαβ =
diag{c2,−1,−1,−1}, and the connection coefficients and its derivatives do not
appear in any field equations of matter, say Γ

γ

αβ(x
μ) = 0. In presence of torsion,

terms Dγαβ(x
μ) are different of zero, then it is a priori rigorously impossible to find

a inertial reference frame. This problem remains open in some sense and should
involve the subtle coupling between spacetime and matter endowed with spin e.g.
Hehl et al. (1976), Knox (2013).
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4.2.4.2 Variational Formulation and Gauge Invariance

In the framework of Einstein gravitation, variational formulation may be found
in e.g. Carter (1973), Taub (1954). Hereafter, we consider curved spacetime with
torsion. Let L (gαβ, Γ

γ
αβ, ∂λΓ

γ
αβ) be a particular Lagrangian, which leads to the

list of arguments gαβ,ℵγαβ ,�γλαβ . Then the geodesic trajectories in the spacetime
should be replaced by the auto parallel trajectories whenever there is closure failure
of Cartan’s parallelogram in presence of torsion (Kleinert 1999). When ℵγαβ �= 0, the
standard variational procedure for the least action extrema must be modified. Due
to torsion e.g. Rakotomanana (1997), the application of nonholonomic mapping
principle (Fiziev and Kleinert 1995) has the consequence that even an action
involving only metric as argument, a generalized stress due to torsion appears e.g.
Kröner (1981), Rakotomanana (1997). This conforms to the differential geometry
approach where torsion force is pointed out in the divergence operator on Riemann–
Cartan manifold e.g. Rakotomanana (2003). Metric and affine connection are
independent variables and accordingly curvature components �λαβμ do not a priori
depend on the metric components gαβ (Hehl and Kerlick 1976). Consider the
variation of the Lagrangian depending on three arguments L (gαβ,ℵγαβ ,�γαβλ)ωn
e.g. Duval and Kunzle (1978), Hojman (1976) which vanishes due to the invariance
(also called Einstein invariance e.g. Kleinert 2008):

S :=
∫

L ωn,

δL =
(
∂L

∂gαβ
− L

2
gαβ
)
δgαβ + ∂L

∂ℵγαβ
δℵγαβ +

∂L

∂�γλαβ
δ�γλαβ = 0 (4.66)

where torsion and curvature are entirely calculated with connection coefficients
Γ
γ
αβ , but not with metric gαβ . ωn denotes the volume-form of the spacetime. The

variation is denoted δ although it is in fact a Lagrangian variation (Carter 1973).
There are some hidden aspects in Eq. (4.66), the arbitrariness of the metric variation
provides the field equation. At this step, we can not apply the arbitrariness of the
torsion end curvature and have to go back to the connection to whom torsion and
curvature are associated.

Remark 4.19 The action is an integral of a 4-form such as Lωn, where the
volume-form ωn should satisfy among others a condition of compatibility with the
connection ∇ e.g. Saa (1995). When the volume-form satisfies the relation (A.21)
(appendix), ωn is said compatible with the connection.

To go further, we now formulate the variation of primal independent variables as
δgαβ and the connection δΓ γαβ . For this purpose, we remind the Palatini relationships
(Rakotomanana 1997):

δℵγαβ = δΓ γαβ − δΓ γβα,

δ�λαβμ = ∇α
(
δΓ λβμ

)
−∇β

(
δΓ λαμ

)− ℵναβ δΓ λνμ (4.67)
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where the covariant derivatives use the connection with non zero torsion. The
second equation (4.67) extends the Palatini identity when continuum has torsion.
By analogy with generalized continuum mechanics, we define the hyper-momenta
as in e.g. Obukhov et al. (1989) which are the constitutive laws of gradient continua:

σαβ := ∂L

∂gαβ
− L

2
gαβ, Σαβγ := ∂L

∂ℵγαβ
, Ξλαβγ := ∂L

∂�γλαβ
(4.68)

Dual variables σαβ , Σαβγ , and Ξλαβγ are also called currents in physics e.g. Forger
and Römer (2004). Stress σαβ in continuum mechanics (resp. energy-momentum
tensor in relativistic gravitation theory) is the response to the local variation of
the distances in the matter (resp. spacetime) e.g. Hehl and von der Heyde (1973).
Moment stress (resp. spin-angular momentum) Σαβγ is the response of change of
discontinuity of scalar field within matter (resp. the torsion of spacetime). Curvature
stress (resp. energy-momentum) is the response to variations of discontinuity of
vector field (curvature field) e.g. Rakotomanana (1997). Introduction of these
relations into the variation of the Lagrangian density gives e.g. Pons (2011):

δL = σαβ δgαβ
+
[
Σαβγ −Σβαγ −Ξμνβγ ℵαμν −∇λ

(
Ξλαβγ −Ξαλβγ

)]
δΓ

γ
αβ (4.69)

+ ∇λ
[(
Ξλαβγ −Ξαλβγ

)
δΓ

γ
αβ

]

We point out the worthiness of choosing appropriate variables from deriving the
conservation laws. Despite the fact that metric and connection are independent
variables, the independence of their variations δgαβ , and δΓ γαβ in the variation (4.69)

should be applied with great care. Of course, it is not acceptable to have σαβ ≡ 0
without additional explanation since at this stage the Lagrange function should be
completed with additional term depending on the metric. The worth set of variables
is a displacement variation δuα and more generally an arbitrary non uniform
translation ξα , and the connection δΓ γαβ as we will see later. For illustrating the
second equation of motion, we will consider hereafter the case where a continuum
evolves within a curved spacetime with a Hilbert–Einstein action, see a recent
review in e.g. Sotiriou and Faraoni (2010).

Remark 4.20 At this step, the present method resembles to some developments
conducted in e.g. Forger and Römer (2004). However the present development is
based on a priori covariant Lagrangian function on a metric-affine manifold M ,
which is not the case in this previous work.

Owing that metric and connection are independent variables, we respectively
factorize with respect δgαβ and δΓ γαβ (both of them are tensor fields) e.g. Hehl et al.
(1976), Sotiriou (2009). The last term of the (4.69) rhs represents a divergence
term for the boundary conditions and could be dropped for the fields equations.
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Scalar curvature includes only first and second-order derivatives of the metric gαβ .
Furthermore, terms in the first and second lines are at most first-order with respect
to Γ γαβ , with however the presence of third-order derivatives of the metric if the

affine connection includes the symbols of Christoffel Γ
γ

αβ . However, some specific
conditions on the constitutive parameters allow us to reduce this order of derivatives
to two at most e.g. Hammond (1990). The arbitrariness of the two basic variables
gαβ (metric), and Γ γαβ (connection) allows us to deduce the field equations:

⎧
⎪⎨

⎪⎩

∂L

∂gαβ
− L

2
gαβ = 0

Σαβγ −Σβαγ − Ξμνβγ ℵαμν −∇λ
(
Ξλαβγ −Ξαλβγ

)
= 0

(4.70)

which extends the Einstein field equations to Einstein–Cartan field equations. A
conceptual problem might pertain since the metric is a tensor whereas the connec-
tion is not. In the next section, we will consider both the metric and the contortion
tensors as primal variables to overcome this apparently misconception modelling.

Remark 4.21 In the framework of the gradient continuum mechanics, there are
alternatives of currents formulation e.g. Polizzotto (2013a) for quasi-static, and
Polizzotto (2013b) for dynamic behaviors. In these papers, generalized stresses are
defined accordingly following the approach of Mindlin (1964, 1965):

σαβ := ∂LM

∂gαβ
− LM

2
gαβ, Σαβγ := ∂LM

∂∇γ εαβ , Ξλαβγ := ∂LM

∂∇λ∇γ εαβ (4.71)

where 2εαβ := gαβ− ĝαβ . Nevertheless, physical meaning of Eq. (4.68) seems quite
clear compared to that of Eq. (4.71). Torsion and curvature have precise physical
or geometrical interpretation. Remark that for Levi-Civita connection ∇ which is
metric compatible, covariant gradients of metric identically vanishes in principle
e.g. Antonio and Rakotomanana (2011), Lovelock and Rund (1975). Care should be
taken before considering the metric gradient as additional variables as we previously
showed in the Corollary (3.1), where the explicit dependency of the Lagrangian
on the covariant derivative of the metric could not be allowed since it identically
vanishes. If such is not the case, then the geometric background is no more a
Riemann–Cartan manifold but rather should be a Weyl manifold.

4.2.4.3 Conservation Laws

We can derive conservation laws when considering variation of metric and connec-
tion respectively. In the absence of external momenta loadings, the field equations
for these dual variables hold from the variational Eq. (4.69) taking account of the
arbitrariness of δgαβ , and δΓ γαβ (Hehl and Kerlick 1976). It should be stressed
however that the two obtained equations would not be at “at the same level”. The
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first is related to a tensor variable and the second to a non tensorial variable. The
first equation may be usually re-derived by reminding the relation between the
Lagrangian variation and the Eulerian variation Δgαβ = δgαβ + Lξ gαβ where
we recognize the Live derivative of gαβ along the displacement ξ : Lξ gαβ :=
∇αξβ + ∇αξβ e.g. Carter and Quintana (1977) for a metric compatible Levi-Civita
connection. By shifting the boundary terms the two conservation laws take the
slightly re-arranged form of:

{ ∇βσαβ = 0

∇λ
(
Ξ
λαβ
γ −Ξαλβγ

)
= Σαβγ −Σβαγ −Ξμνβγ ℵαμν (4.72)

where the first equation, deduced from the arbitrariness of δuα, means that the
energy-momentum tensor is divergence free. The second equation, deduced from
the arbitrariness of δΓ γαβ , suggests that the hypermomentum associated to the torsion
acts as an external source forces.

Remark 4.22 The derivation of constitutive laws was conducted by varying arbi-
trarily the two variables δuα (displacement), and δΓ γαβ (connection). In the case of
relativistic gravitation the Lagrangian L admits the scalar curvatureR as argument.
Then the stress-energy tensor, as defined in the relation (4.71), may be rewritten as:

σαβ = σαβm +ΞαβλμGλμ, Gλμ := �λμ − (1/2)Rgλμ

where σαβm is the part of the Lagrangian due the matter. In the next paragraph, we
will show that the Bianchi identities induce the vanishing of the gravitational part
of the stress-energy tensor, where Gλμ is called Einstein tensor. For instance, the
gravitational stress vanishes in the particular case where Ξαβλμ takes the form of
Ξαβλμ := Λ1 g

αβgλμ+Λ2
(
gαλgβμ + gαμgβλ) and where the connection is metric

compatible.

4.2.4.4 Bianchi Identities

For torsionless manifold (model of either spacetime or matter continuum) the
Riemann–Cartan curvature has some symmetry properties. Two of them are the
Bianchi identities, they express some relations between the curvature components
and the covariant derivatives of curvature components. Let consider the particular
case of Einstein gravitation theory where the torsion vanishes everywhere. The
second Bianchi identity takes the form of:

∑

(αβγ )

∇γ�καβσ = 0 �⇒ δκα

∑

(αβγ )

∇γ�καβσ = 0
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Since the associated connection is assumed metric compatible, we can introduce
the metric within the covariant derivative. Owing the symmetry properties of
the curvature and contracting again by multiplication with gβσ , we obtain, after
applying the circular permutation on (αβγ ), ∇γR − ∇σ�γ σ − ∇α�αγ = 0. Again
by using the metric compatibility of the connection we deduce:

∇γGαγ = 0, with Gαγ := �αγ − (1/2)Rgαγ (4.73)

in which we recognize the Einstein tensor Gαγ . We check that the Einstein tensor
is divergence free (as a direct consequence of the second Bianchi identity) and this
is true only for Riemannian manifold. Furthermore, for term in front of δgαβ :=
∇αδuβ + ∇αδuβ (it is usually assumed but it is indeed not complete variation
in a metric-affine manifold, as we will see hereafter when the torsion does not
vanish). Classically the divergence-free property is then deduced from the second
Bianchi identity. It is a very particular situation. We can observe that there is no
explicit extension of the Einstein tensor in the Einstein–Cartan spacetime. The first
Bianchi identity, sometimes called fundamental identity follows mainly from the
commutativity of the second partial derivatives of the metric components gαβ(xμ)
(integrability condition). The second Bianchi identity is deduced from the single-
valuedness of the affine connection Γ γαβ(x

μ) that is the commutativity of the second
derivatives of its coefficients e.g. Kleinert (2008) (integrability condition). The
Einstein tensor Gαβ is not divergence-free when the torsion is not equal to zero.
As extension to manifolds with torsion, and for the sake of the self-consistency,
let remind the two Bianchi identities e.g. Rakotomanana (2003). They extend the
Bianchi identities formulae of Riemannian geometry to Einstein–Cartan manifold
where (αβγ ) (curved manifold with torsion) is a circular permutation. In a more
convenient form, the first and the second Bianchi identities hold:

⎧
⎪⎪⎨

⎪⎪⎩

∑

(αβγ )

�σαβγ +∇αℵσβγ + ℵσμγ ℵμαβ = 0

∑

(αβγ )

∇γ�καβσ + ℵμαβ�κμγ σ = 0
(4.74)

In the Einstein–Cartan theory of gravitation, the stress-energy tensor may thus be
not divergence-free.

Remark 4.23 Recent studies show that, depending on how the coupling between
gravitational and matter parts of Lagrangian acts, some gravitation theories are not
viable e.g. Sotiriou (2008). Shortcomings are mainly due to facts that differentiation
order of the matter field may be higher than that of the spacetime metric (not
to be confused with that of material metric). This motivated the development of
Palatini variational principle. However, the conservation laws deduced from the
gauge δΓ γαβ ), and conservation laws corresponding to linear momentum highlight
that application of Palatini variational principle has also these shortcomings because
no hypermomentum associated to torsion was introduced in those previous studies.



4.2 Gravitation, Fields, and Matter 135

We observe that for the gauge invariance, consistency problems also appear for
strain gradient continuum. Derivative operator using affine connection with non
zero torsion and curvature should then be used on the gradient continuum. This
extends both the notion of objective time derivatives to higher gradient spacetime
physics e.g. Rakotomanana (2003), and the variation procedure accounting for
the non zero torsion e.g. Kleinert (2008). Further studies should be done for
exploring the consequences of field equations relating discontinuity of scalar field,
and discontinuity of vector fields, and in a broad sense the interaction between
derivatives of strain for high gradient spacetime. Particularly, the presence of
torsion suggests to fundamentally use the concept of auto parallel trajectories
rather than geodesic ones e.g. Kleinert (1999). In practise, it modifies the nature of
wave propagation within non homogeneous continuum e.g. Antonio et al. (2011),
Futhazar et al. (2014). Rigorous definitions of the general variations δgαβ , δℵγαβ ,

and δ�γαβλ is the key point to obtain conservation laws and the additional Eq. (4.68)
defining the covariant hypermomenta.

In order to explore the features of f (R)-theory of relativistic gravitation, which
extends the Einstein–Hilbert action, some studies analyze the entanglement of the
interrelations between metric and connection (with torsion) to point out the role of
torsion when the curvature is calculated with the help of connection with torsion
e.g. Dadhich and Pons (2012), Hehl et al. (1976), Sotiriou (2009). By considering
a particular case of projective variation, they showed that the f (R)-theory of rela-
tivistic gravitation does not support the existence of independent connection which
carries additional dynamical degrees of freedom. This states that the spacetime
manifold is necessarily pseudo-Riemannian. In the presence of matter, however
this result is only valid when the matter action is not coupled with spacetime
connection. This result thus does not apply when we a priori split the Lagrangian
into two contributions L := LG(ĝαβ , �̂γαβλ) + LM(ĝαβ , gαβ,ℵγαβ,�γαβλ) e.g.
Hehl et al. (1976). The presence of the spacetime metric ĝαβ is mandatory for the
matter Lagrangian (Lehmkuhl 2011). The choice of such a Lagrangian suggests
that there can be no torsion of the spacetime outside the eventually spinning/strain
gradient defected matter distribution contained in LM . We will see hereafter that the
presence of torsion should be considered in principle when the connection is coupled
with matter in LM e.g. Sotiriou (2009). We focus on the spacetime behavior without
matter.

4.2.4.5 Fields Equations in Curved Spacetime with Torsion

Let (M , ĝαβ , Γ̂
γ
αβ) be a spacetime where the connection may not be a priori metric

compatible. We now consider the Einstein–Hilbert action for relativistic gravitation
by considering three formalisms for the same action:

SEH :=
∫

M
ĝβλ�̂ααβλω̂n, ω̂n :=

√
Detĝ dx0 ∧ dx1 ∧ dx2 ∧ dx3 (4.75)
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First, the metric formalism (classic relativistic gravitation) is based on the Einstein
gravitation, where the connection is reduced to the Levi-Civita torsionless connec-
tion. From Eq. (4.69), the variation with respect to metric δĝαβ leads to the field
equations:

R̂αβ − (1/2) R̂ ĝαβ = 0 (4.76)

which leads to the classical field equations of relativistic gravitation. No continuum
matter is considered in this section and the spacetime M is assumed unbounded.

Remark 4.24 First, the unknowns of the field equations (4.76) are the components
of the spacetime metric ĝαβ(xμ). Then at a second step, we calculate the associated
Levi-Civita connection Γ̂ γαβ(x

μ).

Second, the Einstein–Palatini formalism is based on the same shape as Einstein–
Hilbert action: SEP :=

∫
R̂[Γ̂ γαβ]ωn where the connection is independent on the

metric ĝαβ . The independent variation of the metric and the connection leads to,
thanks to Eqs. (4.69), and (4.72):

{
R̂αβ − (1/2) R̂ ĝαβ = 0

∇̂λ
(
Ξ
λαβ
γ −Ξαλβγ

)
= 0

(4.77)

In Einstein relativistic gravitation, only the first row of Eq. (4.77) holds since the
angular momentum equation is trivial, it is satisfied by the symmetry of the energy-
momentum tensor (dual of the metric variable). In the spacetime of Riemann–
Cartan, a second row appears in (4.77), which emerges as second independent
equation of the gravity, considered as the conservation laws of angular momentum
e.g. Mao et al. (2007). For calculating Ξλαβγ , the directional derivative is used:

lim
h→0

1

h

[
L (�̂γλαβ + hδ�̂γλαβ)−L (�̂γλαβ)

]
= ∂L

∂�̂γλαβ
δ�̂γλαβ (4.78)

The trick is also to introduce the skew symmetry of the curvature with respect to
the two lower indices �̂γλαβ = −�̂γαλβ . Then, a straightforward calculus gives the
derivatives:

Ξλαβγ = 1

2

(
ĝαβδλγ − ĝλβδαγ

)
, Ξαλβγ = 1

2

(
ĝλβδαγ − ĝαβδλγ

)

The field equations associated to the Einstein–Palatini action then become:

{
R̂αβ − (1/2) R̂ ĝαβ = 0(

δαμδ
λ
γ − δλμδαγ

)
∇̂λĝμβ = 0

(4.79)
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where we introduced ĝαβδλγ − ĝλβδαγ =
(
δαμδ

λ
γ − δλμδαγ

)
ĝμβ , which is a skew-

symmetric projection of the metric.

Remark 4.25 The unknowns of this coupled system of equations (4.79) are the met-
ric ĝαβ(xμ) of the spacetime and the coefficients of the connection Γ̂ γαβ(x

μ). Both
of them determine the dynamics of the spacetime. We observe that the system (4.79)
constitutes a system of first-order coupled partial differential equations in ĝαβ(xμ)
and Γ̂ γαβ(x

μ).

The second equation in (4.79) is a constraint equation for the unknown connection
coefficients Γ̂ γαβ which are a priori arbitrary e.g. Sotiriou and Faraoni (2010). The
second equation (4.79) states that only a projection of the metric gradient vanishes.
If the metric is assumed to be a priori compatible then this is in conformity to the
study of Sotiriou and coworkers e.g. Sotiriou and Faraoni (2010) stating that when
the gravitation Lagrangian is chosen as f (R̂) := R̂, the Einstein–Palatini leads to
metric formalism if the torsion tensor ℵ̂γαβ ≡ 0 is assumed to vanish. In such a case,

Γ̂
γ
αβ reduces to the Levi-Civita connection. This may be related to the fundamental

theorem of Ricci e.g. Nakahara (1996). But in such a way the compatibility is
not a conclusion, it is an assumption. Third, the metric-affine formalism is based
on the action: SMA := ∫

R̂[Γ̂ γαβ ]ωn with non vanishing torsion. In the scope
of Einstein–Cartan relativistic gravitation, we keep the Einstein–Hilbert action as
the spacetime action, but we do not introduce the concept of matter spin at this
stage. Conversely to classical approach, we then assume in the present work that
the Lagrangian density for the gravitational field in the Einstein–Cartan theory is
proportional to the scalar Ricci curvature. Remind nevertheless that the curvature
in such a case is calculated explicitly by means of connection Γ γαβ . The spacetime
action implicitly involves metric and torsion where the spacetime Lagrangian holds
L := R̂ = ĝαβR̂αβ = ĝαβ R̂λλαβ . The curvature is calculated with the connection
which is independent on the metric ĝαβ . The arbitrariness of the variation of the
metric δĝαβ and the connection δΓ̂ γα leads to the field equations, see Eq. (4.69):

{
R̂αβ − (1/2) R̂ ĝαβ = 0(

Σαβγ −Σβαγ −Ξμνβγ ℵ̂αμν
)
+ ∇̂λ

(
Ξ
λαβ
γ −Ξαλβγ

)
= 0

(4.80)

The same calculus of derivatives as previously leads to the field equations for metric-
affine formalism:

{
R̂αβ − (1/2) R̂ ĝαβ = 0

2
(
δαμδ

λ
γ − δλμδαγ

)
∇̂λĝμβ + ℵ̂αγμ ĝμβ = 0

(4.81)

Equation (4.81) are derived for modelling an ideal Riemann–Cartan vacuum
spacetime, which may be questionable. This is slightly different from e.g. Hehl
et al. (1974) where they considered both the intrinsic spin of microscopic elementary
particles and the spacetime torsion, or randomly distributed macroscopic particles
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but with extremely high density where the use of U4 theory still remains necessary.
In the absence of particles either microscopic or macroscopic, for our purpose, the
unknowns of the coupled system of equations (4.81) are the metric ĝαβ(xμ) and the
torsion ℵ̂γαβ(xμ) of the spacetime. As first guess, the solving of Eq. (4.81) in the case
of spherical symmetry would be a first challenge. Conversely to e.g. Maier (2014)
which is not concerned with the torsion source and then assumed the existence of a
matter Lagrangian to preclude the necessity of contortion tensor, the two equations
(4.81) are expected to provide, at least in principle, both the metric and the torsion
(algebraically deduced from the covariant derivative of the metric). In the presence
of torsion source, the right-hand-side of Eq. (4.81) is not equal to zero.

Remark 4.26 Metric compatibility might be pictured as the condition for the
non zero torsion and/or curved spacetime to be a set of “glued” Minkowskian
microcosms e.g. Hehl et al. (1976), the non metricity behaves a like a source of
torsion field.

Equations (4.81) lead to different conclusions than that of the Einstein–Palatini
formalism whenever the spacetime is with non vanishing torsion. This conforms
to the fact that the non zero torsion of spacetime cannot appear without matter spin
since the torsion is directly obtained by algebraic calculus in the second equation
(4.81), and the spacetime torsion ℵ̂γαβ ≡ 0 vanishes if the connection is a priori
assumed metric compatible e.g. Capoziello et al. (2009), Sotiriou and Faraoni
(2010). Without a priori metric compatibility assumption, we observe that only
a projection of the non metricity vanishes, the connection may then be generally
incompatible with metric. For a metric-affine spacetime M where the connection
is not metric compatible, we obtain an algebraic equation for the torsion tensor in
terms of the non metricity. The torsion of the spacetime M could not be highlighted
with a non rotating test-particle, but a test-particle (pole-dipole) with spin e.g. Hehl
(1971), Papapetrou (1951), or continuum medium as fluid with vortex e.g. Garcia de
Andrade (2004), or other physical phenomenon as quantum effects e.g. Hammond
(2002) are suggested to allow us (at least theoretically) to measure the torsion field
of spacetime M .

Remark 4.27 In view of the results obtained with three previous models (Einstein–
Hilbert, Einstein–Palatini, and Einstein–Cartan), the metric compatibility (leading
to a Riemann–Cartan spacetime) induces that the torsion vanishes. The inverse
is not true. For more general theory, it is worth to consider the general form of
Lagrangian (4.82) (hereafter) if we would like to highlight the specific role of the
torsion of the spacetime.

4.2.5 Lagrangian for Coupled Spacetime and Matter

Let now consider a strain gradient continuum (B, gαβ , Γ
γ
αβ) evolving within a

metric-affine spacetime (M , ĝαβ, Γ̂
γ
αβ). For testing the non zero torsion and curved
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spacetime, it is mandatory to consider structured matter as gradient and continuum
with torsion e.g. Puetzfeld and Obukhov (2008), particle with intrinsic spin e.g. Hehl
(1971), or fluid with vortices e.g. Garcia de Andrade (2005). One of the fundamental
problem lies upon the definition of the deformation of such a generalized continuum
with respect to the spacetime. We start by deriving the concept of generalized strain
accounting for the loss of affine equivalence between the matter and the spacetime.
Some authors e.g. Baldacci et al. (1979), Kleinert (1987) already suggested to
investigate the dislocation dynamics in stressed metallic bodies with the help of
relativistic gravitation theory by introducing micro-universe, which is in some
extend the concept of geometric microcosm in e.g. Gonseth (1926), Malyshev
(2000). In the same way, we consider the common mathematical background
between strain gradient continuum and relativistic gravity theories. Coupling of
matter and spacetime is not a trivial problem e.g. Lehmkuhl (2011), Sotiriou (2008).
The simplest illustration consists in an elastic simple material (B, gαβ) evolving
within a Newton–Cartan spacetime (N , ĝαβ ≡ [δαβ, τ̂α ≡ 1], Γ̂ γαβ) and submitted
to a conservative force (Maugin 1978) deriving from a potential Uext(x

α) with (the
spacetime connection coefficients are obtained from the external potential (4.13)):

L = L (εαβ, �̂γαβλ), εαβ := (1/2)
(
gαβ − ĝαβ

)
, �̂βα00 := ∂β∂α Uext

where the dependence on the strain tensor ε may be included in a potential strain
energy Uint

(
εαβ
)
. It was argued that the presence of torsion tensor as arguments

of the Lagrangian density was reasonable at microscopic level e.g. Hehl (1985),
Yasskin and Stoeger (1980). First, the reason supporting the inclusion of the three
arguments (metric, torsion, and curvature) is to relate the curvature to mass and the
torsion to spin at small scale level, both of them may be source of gravitation e.g.
Aldrovandi and Pereira (2007). Second, for 3D strain gradient continuum, there
are three independent invariants in torsion, and three independent invariants in
curvature which can be introduced as “fine tuning” variables. These lead to propose
a general form of Lagrangian density in terms of torsion and curvature including
some important particular cases e.g. Katanaev and Volovich (1992), Kleinert (2008),
Kobelev (2010), Maluf et al. (2002):

S :=
∫

M
L
(
ĝαβ, ℵ̂γαβ, R̂γαβλ; gαβ,ℵγαβ ,�γαβλ

)
ωn (4.82)

where the domain of integration is, for example, over a volume of the spacetime
swept out by the worldlines of all particles of the continuum matter e.g. Taub (1954).
In a general manner, Lagrangian (4.82) includes different models e.g. Lompay
(2014), Maier (2014), Sotiriou and Faraoni (2010) (in the last reference the analysis
of viability of each of these models with their field equations is conducted in details),
Vitagliano et al. (2011). Two possibilities to account for spacetime-matter coupling
already exist (minimal coupling Lehmkuhl 2011): (a) the tetrads formulation gαβ :=
F iα ĝij F

j
β , and (b) the strain method εαβ := (1/2)(gαβ − ĝαβ) where the presence
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of spacetime metric is implicitly assumed in the matter Lagrangian e.g. Lehmkuhl
(2011). They are not exclusive. When considering the motion of a continuum matter
B within a spacetime M with respectively their own metric and (Levi-Civita)
connection, Taub (1954) and later Carter (1973) analyzed the perturbation of a
continuum motion due of both the infinitesimal displacement of the medium and
the infinitesimal variation of the spacetime metric tensor for deriving the associated
variational principle, for perfect fluids and slightly extended for elastic continuum
matter respectively. Carter has shown that it is unnecessary to make distinction
between the Lagrangian and the Eulerian variations of the action S := ∫M L ωn,
if the action L or the local infinitesimal translation (Poincaré gauge) vanishes on
the boundary of the volume of integration ∂M . For curved continuum with torsion
evolving within a curved spacetime with torsion, further studies are needed. Let
proceed to a more complete definition of generalized transformations e.g. Hammond
(1990), Lovelock (1971), Utiyama (1956), Vitagliano et al. (2011) which include
change of shape and change of topology e.g. Verçyn (1990) of manifolds. The basic
idea is to highlight the change of local topology within continuum matter during the
transformations.

4.2.5.1 Example of Nonminimal Coupling Application

The simultaneous presence of spacetime metric and matter metric, matter torsion
and curvature, and spacetime torsion and curvature means a coupling of the
spacetime and the matter. It was shown in e.g. Puetzfeld and Obukhov (2008) that
under minimal coupling theory of gravitation the detection of spacetime torsion
was not possible for bodies without intrinsic spin, or microstructural architecture.
To go further, and as an illustration of nonminimal coupling between curved
spacetime with torsion, and a matter with microstructure, the following Lagrangian,
which is an example of (4.82) was proposed by Puetzfeld and Obukhov (2013b)
: L := F(ĝαβ, ℵ̂γαβ , R̂γαβλ) LM(ĝαβ, Ψ

A,∇αΨ A) where F is a scalar function
whose arguments are metric, torsion and curvature components of the spacetime.
General formulation of conservations laws deduced from this Lagrangian by means
of Noether’s theorem were obtained in Puetzfeld and Obukhov (2013b), where they
developed the equations for pole-dipole bodies under gravitation. This paper based
on nonminimal coupling opens the way to derive theory able to detect torsion of
spacetime.

4.2.5.2 Strain Tensor in Relativity

One main difficulty in defining the relativistic strain in deformable solid is the
missing of a natural undeformed state for solid continuum. This difficulty does
not appear for fluid mechanics in relativistic mechanics. For solid-like continuum
and for the concept of body’s strain in the framework of relativistic gravitation,
we start by defining the basic unknown as a mapping from the four-dimensional
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spacetime onto the three-dimensional body (or material space) where μ = 0, 1, 2, 3
and i = 1, 2, 3:

ϕ : xμ ∈M → Xi := ϕi (xμ) ∈ B (4.83)

with the following conditions: (a) The linear mapping ∂μϕi should has maximal
rank; (b) the null space of the linear mapping ∂μϕi is a time-like with respect to
the spacetime metric ĝαβ . In other words, there exists a unique time-like four-vector
field uμ ∈ TxM such that:

uμ ∂μϕ
i = 0, ĝμν u

μuν = 1, u0 > 0 (4.84)

The mapping ϕ is called configuration of the body. Solving the above equations
allows us to express the velocity field of the matter uμ as function of the components
∂μϕ

i , and the spacetime metric ĝμν . We remind the use the coordinate system (x0 :=
ct, x1, x2, x3) in this section and in most part of this paper. The relation ĝαβuαuβ =
c2 can be replaced by ĝαβuαuβ = 1 obviously in the adopted coordinate system.
The following relation holds e.g. Kijowski and Magli (1992):

∇γ
(
ĝαβu

αuβ
) = 2uα∇uα = 0 (4.85)

This constitutes the geodesic equation of a timelike curve: ĝμν uμuν = 1 with
uμ := dxμ/dτ .

Definition 4.1 The body-metric (or matter-metric) in B corresponding to the
configuration ϕ of the body evolving within a spacetime M endowed with the
metric ĝαβ is defined as:

gij := ∂μϕi ĝμν ∂νϕj (4.86)

This metric although depending on x0 is a definite positive symmetric associated
to the matter. It measures the space distance between microcosms of matter at
each time x0. This is similar approach compared to the tetrads method, however
∂μϕ

i is not truly analogous to the classical deformation gradient but corresponds
to its inverse e.g. Kijowski and Magli (1992). The line element in the body B
holds: dS2 := gij dX

idXj . Since the matter-metric gij (xμ) depends on the xμ

(four spacetime coordinates) and the configuration ϕ is not a diffeomorphism, a
supplemental (necessary and sufficient) condition is required.

Definition 4.2 The orthogonal projection operator Pαβ := ĝαβ − uαuβ is a
projection from spacetime M onto the spacelike hypersurface orthogonal at event
xμ.

Each tangent vector to the manifold M can be decomposed into a component
tangent to the velocity uμ and a component orthogonal to it. The supplemental
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condition applies on the space projection operator which, first, satisfies some trivial
properties:

Pαβuβ = 0, Pαβĝαβ = 3 (4.87)

Then, the Lie derivative of the metric projection orthogonal to four-vector u in the
direction of u itself should vanish: LuPαβ ≡ 0. We have defined the contravariant
components of the matter metric gij (xμ) in the relations (4.86). An alternative way
to calculate its covariant components consists in calculating the line element of the
projection of a four-dimensional vector M to the three-dimensional body B:

ds2 =Pμνdx
μdxν ≡ gij dXidXj , dxμ = Fμi dXi

where Fμi (X
k, τ ) is the direct deformation gradient (not invertible) from B to

M , and τ is merely a time parameter and not argument. We deduce the metric
components and by the way we can define the extended version of the Green-
Lagrange strain tensor in relativistic continuum mechanics, e.g. Kijowski and Magli
(1992), Maugin (1978):

gij = Fμi PμνF
ν
j , εij := (1/2)

(
F
μ
i PμνF

ν
j − ĝij

)
(4.88)

The contravariant components (4.86) are defined by means of the transformation
ϕ whereas the covariant components are obtained with the help of the projection
operator and the gradient of deformation. Covariant components reduce to classical
Green-Lagrange strain tensor for classical continuum mechanics e.g. Marsden and
Hughes (1983).

Remark 4.28 On the one hand, starting from the definition of the gradient of
deformation dxμ := F

μ
i dX

i and the transformation ϕ from M to B, say dXi =
∂νϕ

idxμ, we obtain the relation: Fμ∂iϕν = δμν , since δμν = gμαgαν , where Greek
indices run for (0, 1, 2, 3), and the gradient of deformation is not invertible. On the
other hand, we can write dXi = ∂μϕidxμ, and dxμ = Fμj dXj , we can deduce:

∂μϕ
iF
μ
j =P i

j , Pμ
ν := gμαPαν (4.89)

For flat Minkowskian spacetime M and with the coordinate system (x0, x1, x2, x3),
the mixed components of the projector reduce to:

Pμ
ν := gμαPαν =

⎡

⎢
⎢
⎣

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ (4.90)
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where spacelike projection reduces to identity tensor δij if only 3D space and matter
are considered.

Now, let consider a spacetime configuration of a material and let define the pull-back
of the three-dimensional space metric of B (Riemann manifold) as follows:

hμν := ∂μϕi gij ∂jν (4.91)

where gij (x0, xi), i = 1, 2, 3 is a metric of the Riemann configuration of the
material body B at the event xμ. We have directly the following properties:

hμν = hνμ, hμνu
ν = ∂μϕi gij ∂νϕjuν = 0

showing that the symmetric spacetime metric hμν is orthogonal to the velocity field
uν deduced from Eq. (4.84). Let define the tensor

K μ
ν := ĝμσ hσν + uμuν (4.92)

The velocity vector is an eigenvector of the symmetric tensor K with eigenvalue 1:

K μ
ν u

ν = ĝμσ hσνuν︸ ︷︷ ︸
=0

+uμ uνuν︸︷︷︸
=1

= uμ

Several strain tensors may be designed by means of this tensor K which is
analogous to the Cauchy-Green strain tensor and the related generalized strain
measures e.g. Curnier and Rakotomanana (1991):

Eμν :=
1

2

(
K μ
ν − δμν

)
, Eμν :=

1

2
ln
(
K μ
ν

)
(4.93)

The two previous definitions of relativistic strain tensor were respectively intro-
duced by Maugin e.g. Maugin (1993), and Kijowski and Magli e.g. Kijowski and
Magli (1992). Tensor E contains all information about the local state of strain within
matter, and satisfies the relation Eμν uν = 0.

4.2.5.3 Metric Strain Tensor

The difference between metric of spacetime and that of the matter is defined by the
strain tensor that is similar to the Green-Lagrange strain in relativistic theory (4.88):

2εαβ := gαβ − ĝαβ (4.94)

defining modification of shape of the continuum with respect to spacetime. In this
definition, it is implicitly assumed that the continuum matter is initially endowed
by the spacetime metric ĝαβ . For the sake of the simplicity, this metric is always
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FpFe

Initial (defect-free) Intermediate (defect-free) Final (defect)

holonomic non holonomic

Fig. 4.4 Change of local topology and stress relaxation. When an external force is applied, an
internal strain is produced in the continuum. For the sake of the simplicity, it is assumed that
an internal elastic stress accompanies this strain during a finite interval of time. If we keep
the deformation much longer as the relaxation time of the material, the bonding structure of
microcosms change and the internal strain diminishes (rightmost state) or eventually disappears.
In fact a new type of strain appears and corresponds to plastic deformation/or more generally a
change of local topology within the matter e.g. Bilby et al. (1955), Le and Stumpf (1996)

assumed to be Euclidean/(flat) Minkowskian. The definition (4.94) is appropriate
for elastic deformation of matter when no internal change of microstructure changes.
For understanding how material evolves in time, let consider a material consisting
of many microcosms (represented by rectangular box on the below Fig. 4.4) bonded
each other. Let assume that their are at their equilibrium state in the absence of
strains (on the leftmost state).

In Fig. 4.4, the central and the rightmost figures have the shame shape, math-
ematically the same induced metric but with different bonding structure between
microcosms. More in details, two points xμ and xμ + dxμ are separated by the
(squared) distance ds2 = gαβ (x) dxαdxβ . If we remove virtually the strain field
in the region surrounding these two points, then these two points will take other
position x̃μ, and x̃μ + dx̃μ respectively. This corresponds to a map ϕ : x→ x̃ (x).
We can define therefore a metric g̃αβ (x)measuring the virtual distance between the
transformed points (commonly it is called the pullback of the metric gαβ for the
map, g̃ := ϕ∗g e.g. Marsden and Hughes 1983):

ds̃2 := gαβ
(
x̃
)
dx̃αdx̃β = gαβ

(
x̃
) ∂x̃α

∂xμ

∂x̃β

∂xν
dxμdxν := g̃μν (x) dxμdxν

An alternative (Green-Lagrange) strain tensor may be also defined as the half-
difference of metric:

2εαβ (x) := gαβ (x)− g̃αβ (x) (4.95)

which is different than the definition in Eq. (4.94). The strain (4.95) might be
related to the concept of locally relaxed configuration in the framework of continua
elastoplasticity e.g. Rakotomanana (2003).

Remark 4.29 The definitions of strain (4.94) and (4.95) may be considered as
a relativistic strain tensor compared to the spacetime and to a non defected
configuration of the continuum, respectively. In the framework of general relativity
where the spacetime is no more flat, the spacetime metric is field dependent on the
coordinates (xμ). When dealing with perturbation analysis of a continuum motion,
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say B in the spacetime M , it is well sound that perturbations of the motion are
induced both by the displacements of B and by the non uniformity of the spacetime
M metric field e.g. Carter (1973), Carter and Quintana (1977). Accordingly, the
accounting for the two contributions should be done when deriving the change of
the metric field for a variation principle.

4.2.5.4 Physical Interpretation on Material Manifold and Defects

For a n-dimensional continuum (n ≤ 3), the Ricci curvature may play the role of
irreversible plastic deformation e.g. Kobelev (2010). In this work, the emergence
of torsion and curvature is treated as the transition from elastic, defect-free state,
with Euclidean geometry to plastic, defect nucleation, endowed with Riemann–
Cartan geometry (Kleman and Friedel 2008). In some sense, it is analogous to
the nucleation of dislocations and disclinations, the microcracking within ideal-
ized virgin continuum e.g. Rakotomanana (1997), Ramaniraka and Rakotomanana
(2000). The accounting of the torsion, and curvature fields on the metric-affine
continuum may be done for different length scales as illustrated by Fig. 4.5 ranging
from crystalline defects to continuous distributions of microcracking. Design of
strain energy density of gradient continuum may be recast into the mathematical
background of relativistic gravitation with these new insights. Previous original
energy function in Mindlin (1964, 1965), and all particular cases developed after,
would be better reshaped with a metric-affine manifold as geometric basis. In any
case, there is a plethora of new constants and certainly with little guiding physics

10Å - 50Å

1µm - 10µm

≥ 100µm

(a) (b) (c)

Fig. 4.5 Various length scales of a model: (a) crystalline—with a Burgers vector, (b) microscopic
with cracking—showing a non closed Cartan path, and (c) macroscopic defected continuum
�100 μm
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principle to help the significance of each new constant. For instance, Katanaev and
Volovich reduced the number of independent parameters of previous Lagrangian
to 2. They have adapted the Lagrangian method of metric-affine gravity to three-
dimensional elasticity with defects e.g. Verçyn (1990). To this end, they find
solutions of the associated equilibrium and analyze the set of coupling constants
that may lead to physically acceptable solutions: the requirement is to impose the
model to describe solutions with only dislocations, with only disclinations, and the
case with neither dislocations nor disclinations Katanaev and Volovich (1992).

4.2.5.5 Torsion Change

The existence of both the displacement of the continuum B and the non uniformity
of the spacetime M metric has also its consequences for the connection which is
point-dependent. The difference between the matter connection and the Levi-Civita
connection of the matter is the matter contortion, owing that both the spacetime and
the matter may have their own connection e.g. Koivisto (2011),

T
γ
αβ := Γ γαβ − Γ γαβ (4.96)

where Γ
γ

αβ are the Christoffel symbols associated to the metric gαβ . The contortion
tensor describes the deviation of the matter geometry from the Riemannian geome-
try one, whose connection reduces to the Christoffel symbols (Fig. 4.6).

In the framework of microphysics and relativistic gravitation, Hehl et al. have
already observed that the intrinsic spin of microparticles is rather associated to
contortion but not to torsion e.g. Hehl et al. (1976). From mathematical point of
view, it should be reminded that torsion is a more basic variable since contortion
includes both the metric and the torsion tensors. When the connection is assumed
metric compatible, contortion tensor Tγαβ includes symmetric and skew-symmetric

parts, see Eq. (2.44) whereΩγαβ := (1/2) ℵγαβ ,

T
γ
αβ := Ωγαβ + gγλgαμ Ωμλβ + gγλgμβ Ωμλα

Fig. 4.6 Stress-strain curve
during plastic deformation of
continuum. During the
loading of the matter, beyond
the stress yield σY , there is a
nucleation of dislocations
within the body and then
nucleation of discontinuities
(torsion)

Y



4.2 Gravitation, Fields, and Matter 147

Matter contortion in Eq. (4.96) includes both the metric and the torsion. As
alternative (by analogy to the metric), if we choose the variable T̃

γ
αβ := Γ γαβ − Γ̂ γαβ

(two independent connections for spacetime and matter e.g. Koivisto 2011), the
interpretation is modified:

T̃
γ
αβ = T

γ
αβ + (1/2) gγ σ (∂αgσβ + ∂βgασ − ∂σ gαβ)
− (1/2) ĝγ σ (∂αĝσβ + ∂βĝασ − ∂σ ĝαβ) (4.97)

Nevertheless, the choice of the contortion T
γ
αβ seems worth because it captures

the change of the continuum matter topology (locally) from holonomic to non
holonomic deformation, rather than T̂

γ
αβ which is rather the difference of local

topology between the matter and the spacetime.

Remark 4.30 In the framework of continuum physics, it is worth to consider
description at different length scales, say “macroscopic deformation” (associated to
the change of metric) and “mesoscopic deformation” (change of other geometric
variables). For instance, the first length scale constitutes the basis of classical
continuum mechanics e.g. Marsden and Hughes (1983), whereas the second one is
used for internal architecture of matter e.g. Rakotomanana (2003). A real situation
mixed both of them. A practical approach would assume that at the macroscopic
length scale, the deformation of the continuum is a assumed a diffeomorphism. In
a such a particular way, the Levi-Civita connection coefficients Γ

γ

αβ associated to
the metric gαβ do engender neither torsion nor curvature, then only contortion T

γ
αβ

matters in Eq. (4.96).

4.2.5.6 Curvature Change

Let first define the general context on curvature. For relativistic gravitation, the
symbols of Christoffel Γ

γ

αβ := (1/2)gγλ(∂αgλβ + ∂βgαλ − ∂λgαβ) were often
considered as possible additional arguments of the Lagrangian density, in addition
to metric gαβ , and other kinematical variables related to the geometry of spacetime
e.g. Forger and Römer (2004).

However, on a Riemannian continuum, Lovelock and Rund have shown that if
one assumes a dependence as L (gαβ, ∂γ gαβ), the Lagrangian takes necessarily the
form of L (gαβ) to satisfy covariance. This is a major result on the covariance
condition. The first part of the present paper was inspired in part from results
in Lovelock and Rund (1975). Lovelock (1971) then extended its investigation to
Lagrangian density L

(
gαβ, ∂γ gαβ, ∂γ ∂μgαβ

)
Forger and Römer (2004), Lovelock

(1971) and applied the covariance condition. Earlier, Cartan (1922) faced the
problem of finding a symmetric second order contravariant tensor (called Einstein
tensor) T μν

(
gαβ, ∂γ gαβ, ∂γ ∂μgαβ

)
which is divergence free and linear with respect

to second derivatives ∂γ ∂μgαβ of the metric, assuming a Minkowskian spacetime
background. See Anderson (1978) for more recent results of divergence-free second
order contravariant tensors. To satisfy the covariance condition, any Lagrangian
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density depending on the metric and its first and second derivatives is necessarily
function of only the metric and the curvature (see Lovelock (1971) for general form

of Lagrangian) L (gαβ,�λαβμ), where curvature components are directly obtained
from derivatives of metric components (Lovelock and Rund 1975):

�λαβμ = (1/2)gλσ
(
∂μ∂αgσβ − ∂μ∂βgσα + ∂σ ∂βgμα − ∂σ ∂αgμβ

)

+ (1/4)gλσ (∂αgσγ + ∂γ gασ − ∂σ gαγ
)
gγ κ

(
∂βgκμ + ∂μgβκ − ∂κgβμ

)

− (1/4)gλσ (∂βgσγ + ∂γ gβσ − ∂σ gβγ
)
gγ κ

(
∂αgκμ + ∂μgακ − ∂κgαμ

)

(4.98)

The change of curvature is induced by the presence of the matter contortion (4.96).
The non uniform metric gαβ(xμ) induces connection Γ

γ

αβ(x
μ) and then nonzero

curvature �γαβλ(xμ) (except in elasticity for strongly continuum mechanics e.g.
Marsden and Hughes 1983). Indeed, another still open question is the possible
coupling between the spacetime curvature �̂ and the matter curvature �, whenever
curvature is zero for neither spacetime nor matter. By choosing a metric connection
on the manifold, we have:

�γαβλ = ∂α(Γ γβλ + T
γ
βλ)− ∂β(Γ γαλ + T

γ
αλ)

− (Γ μαλ + T
μ
αλ)(Γ

γ

βμ + T
γ
βμ)+ (Γ μβλ + T

μ
βλ)(Γ

γ

αμ + Tγαμ)

We arrive to the expression of the curvature strain which is defined as the difference
between the matter and the curvature calculated with Levi-Civita connection:

K
γ
αβλ := �γαβλ −�γαβλ = ∇αTγβλ −∇βTγαλ − (TγβμTμαλ − TγαμT

μ
βλ) (4.99)

where another interest appears when we calculate the scalar curvature e.g. Sotiriou
et al. (2011). Now, by analogy with torsion, we can define the curvature “strain”
with respect to the spacetime curvature by writing K̃

γ
αβλ := �γαβλ−�̂γαβλ = K

γ
αβλ+

(�γαβλ − �̂γαβλ) where we remind the components from Eq. (4.98):

�λαβμ = (1/2)gλσ
(
∂μ∂αgσβ − ∂μ∂βgσα + ∂σ ∂βgμα − ∂σ ∂αgμβ

)

+ (1/4)gλσ (∂αgσγ + ∂γ gασ − ∂σ gαγ
)
gγ κ

(
∂βgκμ + ∂μgβκ − ∂κgβμ

)

− (1/4)gλσ (∂βgσγ + ∂γ gβσ − ∂σ gβγ
)
gγ κ

(
∂αgκμ + ∂μgακ − ∂κgαμ

)

and with the hat:

�̂λαβμ = (1/2)ĝλσ
(
∂μ∂αĝσβ − ∂μ∂βĝσα + ∂σ ∂βĝμα − ∂σ ∂αĝμβ

)

+ (1/4)ĝλσ (∂αĝσγ + ∂γ ĝασ − ∂σ ĝαγ
)
ĝγ κ

(
∂βĝκμ + ∂μĝβκ − ∂κ ĝβμ

)

− (1/4)ĝλσ (∂βĝσγ + ∂γ ĝβσ − ∂σ ĝβγ
)
ĝγ κ

(
∂αĝκμ + ∂μĝακ − ∂κ ĝαμ

)
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For a flat spacetime as Minkowski M and Galilean G spacetime (without “external
forces of gravitation”), this later vanishes �̂γαβλ ≡ 0 as well as the torsion ℵ̂γαβ ≡ 0.

In such a case, we exactly have the curvature expression �λαβμ by changing the
metric into the strain 2 εαβ instead of gαβ (both first and second derivatives occur in
the overlined curvature). The same remark as for the torsion holds for the curvature
tensor.

Definition 4.3 Consider a curved spacetime with torsion, modeled with four
dimensional metric-affine manifold M endowed with metric ĝαβ , torsion ℵ̂γαβ , and

curvature �̂γαβλ. A second gradient continuum B is a continuum whose matter

Lagrangian is defined by LM := LM(εαβ,T
γ
αβ ,K

γ
αβλ), where εαβ (Eq. (4.94)), Tγαβ

(Eq. (4.96)), and K
γ
αβλ (Eq. (4.99)) are respectively the strain, the torsion, and the

bending of the continuum matter evolving in the spacetime.

Remark 4.31 An extension of the Einstein–Hilbert action was defined in e.g.
Tamanini (2012) by considering two independent connections Γ γαβ and Γ̂ γαβ (for
instance associated to spacetime and to matter respectively) in addition to the
metric gαβ as arguments of the Lagrangian density. Recent and exhaustive review
of arguments list for Lagrangian function may be found in e.g. Clifton et al. (2012).

4.2.5.7 Relativistic Volume-Forms and Matter Current

For studying the motion of a continuum within a relativistic spacetime, it is also
necessary to consider two volume-forms. Let introduce a volume-form in the three-
dimensional material space B:

ω3 :=
√

Detg dX1 ∧ dX2 ∧ dX3 (4.100)

The pull-back of ω3 to the four-dimensional spacetime is a 3-form field in the four-
dimensional spacetime M . It means that ω3 is a vector density. It is usual to define
the matter current as the vector density:

J := ρ0 ω3 (4.101)

where ρ0(X
i) is assumed as the density of the matter. Determination of the

components of J in a coordinate system xμ is done by substituting the material
space coordinatesXi := ϕi(xμ) by their values in function of xμ:

J = ρ0
√

Detg
(
∂νϕ

1∂μϕ
2∂σϕ

3
)
dxν ∧ dxμ ∧ dxσ

in which Greek indices run from 0 to 3, and where we can define components
projected onto each of the four 4-form fields:

{
dx0 ∧ dx1 ∧ dx2, dx1 ∧ dx2 ∧ dx3, dx2 ∧ dx3 ∧ dx0, dx3 ∧ dx0 ∧ dx1

}
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The associated components may thus be written in a condensed formulation:

Jμ = ρ0
√

Detg εμνρσ
(
∂νϕ

1∂ρϕ
2∂σϕ

3
)

(4.102)

where εμνρσ = 1 is for a cyclic circular permutation (0123), −1 for anti-cyclic
permutation and 0 whenever two indices are equal. The exterior derivative of the
3-form ω3 vanishes, say dω3 ≡ 0 since it gives a 4-form in the three dimensional
space B. Therefore, the exterior derivative of its pull-back is also equal to zero:
dJ = d (ϕ∗ω3) = ϕ∗ (dω3) ≡ 0. It is equivalent to write down a free-divergence
field (which is an extension of the mass conservation):

dJ = DivJ ωM = 0 �⇒ DivJ = 0 (4.103)

Following the method of e.g. Kijowski and Magli (1992), we observe that multi-
plying the matter current by the deformation gradient gives ∂μϕa Jμ ≡ 0 since
εμνρσ

(
∂νϕ

1∂ρϕ
2∂σϕ

3
)
∂μϕ

a is the determinant of a matrix with two identical
columns, since a = 1, 2, or 3. Both ∂μϕi uμ and ∂μϕi Jμ are equal to zero, then the
matter current Jμ is parallel to the velocity field uμ, say:

Jμ = ρ√Detg uμ, ρ :=
√
JμJμ

Detg
(4.104)

where the matter current is given by relation (4.102). The term ρ(∂μϕ
i) is called

actual rest frame density e.g. Kijowski and Magli (1992). Since u0 = 1, the
component J 0 := ρ√Detg = ρ0

√
Detg ε0νρσ (∂νϕ

1∂ρϕ
2∂σϕ

3) leads to:

J 0 = ρ0
√

Detg Det
(
∂μϕ

i
)

4.2.5.8 Lagrange for Coupled Gravity and Matter

We observe that: (a) curvature �γαβλ is a second gradient variable in terms of
strain εαβ , and then a third gradient one for displacement uα ; and (b) curvature
is not linear with respect to contortion tensor Tγαβ . The previous development shows
us that the generalized deformation of the matter continuum with respect to the
ambient spacetime (relativistic or classical) includes three contributions: (1) the
metric strain εαβ(xμ), (2) the loss of affine equivalence of matter during deformation
(linear change of the connection) Tγαβ(x

μ) in Eq. (4.97), and (3) the bending of the

matter in the course of time (second order change of the connection) Kγαβλ(x
μ) in

Eq. (4.99). Thanks to the expression of change of metric, torsion, and curvature, we
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obtain the following action by introducing the “generalized deformations” in the
Lagrangian (4.82):

S :=
∫

L
(
ĝαβ, ℵ̂γαβ, R̂γαβλ; εαβ,Tγαβ,Kγαβλ

)
ωn (4.105)

which includes the spacetime gravitation (relativistic or not), and the part of
Lagrangian due to the transformations of the matter. The presence of torsion of
the continuum B and that of spacetime M is suggested by the seek of coupling
of the Riemann–Cartan geometry of both of them. For instance, minimal coupling
of electromagnetic field and gravitation may be done by means of the torsion of a
spacetime e.g. Prasanna (1975a), Smalley and Krisch (1992). The presence of the
spacetime torsion ℵ̂γαβ may be illustrated by the model in e.g. Poplawski (2010)
where the torsion is shown to be a candidate to be an electromagnetic potential by
considering an Einstein–Cartan spacetime, the curl of the torsion trace constitutes
the electromagnetic field tensor whereas the curvature represents the gravity.

Remark 4.32 Function (4.105) is a different formulation of the general Lagrangian
suggested in e.g. Obukhov and Puetzfeld (2014), Puetzfeld and Obukhov (2013a)
where they propose the contortion as primal variable but they keep the curvature as
an argument of the Lagrangian instead of the change of the curvature. Two classes
of models with non minimal coupling have been studied in Obukhov and Puetzfeld
(2014), say,

L = LG

(
ĝαβ , ℵ̂γαβ, �̂γαβλ

)
LM

(
gαβ,ℵγαβ,�γαβλ

)

L = LG

(
ĝαβ , ℵ̂γαβ, �̂γαβλ

)
+LM

(
ĝαβ, gαβ,ℵγαβ,�γαβλ

)

The first one can be considered as multiplicative model, whereas the second one is
a quite classical additive model. The present model (4.105) is slightly different.

In the case of classical Galilean spacetime, the Lagrangian density (4.105) extends
the Mindlin’s model in Mindlin (1964) for first strain gradient linear elasticity, and
in Mindlin (1965) for the second strain gradient models. This also modified version
of the Lagrangian proposed by Hehl et al. (2013) in the framework of Poincaré
Gauge Theory where these authors propose a standard theory of gravitation with
torsion, when a curved continuum matter with torsion is evolving within a curved
spacetime with torsion. For inertial terms, add ρc

√
uαuα where uα := ĝαβuβ is

the contravariant components of the four-vector velocity. The inertial terms in such
a case is obtained by applying the condition of slow velocity c2 >> v2 and the
four-vector velocity reduces to uα → (1, v1, v2, v3). For that purpose, the (three
dimensional) generalized deformation of the generalized continuum is defined by
a symmetric strain εαβ , a skew-symmetric torsion deformation τ̃αβ , and a bending
deformation κ̃αβ , calculated by means of the space vector vi (more precisely of the
displacement associated to the velocity vi ). The last two tensors are obtained from
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the torsion, and the Ricci curvature. Both of them have only six components for
three dimensional manifolds e.g. Nakahara (1996).

4.2.5.9 Remarks on Teleparallel Gravity (TPG)

Now, let go back to the vacuum spacetime with respect to torsion and to curvature
fields. From Eq. (4.99) we may calculate the curvature gβλ�ααβλ, and obtain the
relationship:

R = R+ T +∇α(gβλ Tαλβ)− ∇β(gβλ Tαλα) (4.106)

where R is the curvature obtained from the Levi-Civita connection. The quadratic
contortion scalar function

T := gβλ(−TαβμTμαλ + TααμT
μ
βλ) (4.107)

is called the quadratic torsion Lagrangian and is utilized in the tele parallel gravity
e.g. Sotiriou et al. (2011). By the way, the two last terms are divergence terms with
respect to the Levi-Civita connection. This means that for Weitzenböck connection
with a zero curvature R ≡ 0, the action of the Einstein relativistic gravitation
(function of the curvature R) differs from the action of the tele parallel gravity
(function of T) by a boundary term (integral of a divergence term). This explains
why the Einstein–Hilbert Lagrangian function has an equivalent Lagrangian func-
tion in terms of torsion (tele parallel gravitation) e.g. Cho (1976a). In this paper,
Cho showed that if the gauge principle is applied for the group of translations T4,
the obtained gauge theory is unique and reduces to the Einstein classical theory of
gravitation. The relation (4.99) relates the curvature and the contortion (and thus
the torsion), and then it was showed that the use of torsion T rather than curvature
R in the Lagrangian formulation gives an alternative geometric interpretation of
the Einstein’s theory with the help of translational gauge formalism (Cho 1976a).
Such a approach allows us to develop generalized continuum models which showed
that edge end screw Volterra dislocations are associated to gauge invariance in the
three dimension material manifolds e.g. Malyshev (2000). In this paper, Malyshev
has interestingly shown that the Einstein–Hilbert Lagrangian is suitable to study
Volterra dislocations in elastic material. By the way, the use of Weitzenböck
connection together with tele parallel gravitation was shown to be an alternative
way of modelling Volterra dislocations. We recover the following theorem.

Theorem 4.2 Consider a metric-affine manifold (B, g,∇). Let assume that the
curvature associated to the metric identically vanishes, say �γαβλ ≡ 0. Then, any
Lagrangian density L (�γαβλ) function of the scalar curvature may be expressed

as a Lagrangian density function of the contortion L (T
γ
αβ) (and its Levi-Civita

covariant derivative).
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Proof It suffices to apply the relation (4.99) and to transfer the divergence-like terms
at the manifold boundary ∂B. See also proof in e.g. Sotiriou et al. (2011). ��
The most known Lagrangian density and related action built upon this theorem is
the tele parallel gravity given by: S := (1/2χ) ∫B T ωn, directly drawn from the
relation (4.99), which is quadratic in torsion terms (but linear in curvature). This
Lagrangian is obviously covariant, but Li et al. have shown its non invariance under
the (active) Lorentz diffeomorphism (Li et al. 2001). This also true for its extension
f (T) e.g. Li et al. (2001).

Remark 4.33 In some particular cases, curvature tensor may be defined without
making use of (independent) connection but entirely based on the derivatives of the
metric tensor gαβ (for Levi-Civita connection). Conversely, torsion has no metrical
interpretation, it is an intrinsic property of the connection Γ γαβ .

A class of Lagrangian density was proposed by using the Weitzenböck spacetime
with torsion but zero curvature e.g. Hayashi (1979), Maluf et al. (2002) to obtain the
so called “new general relativity”. Relations between curvature based gravitation
and torsion based gravitation, mainly boosted by the works of Kibble, Utiyama and
others were developed by imposing a second order equations, rather than fourth
order equations ones Kibble (1961), Utiyama (1956). This allowed to consider
the torsion as gauge field of conformal transformation e.g. Hammond (1990). A
Lagrangian density in the framework of tele parallel gravity was suggested, with the
constant χ := 8πG/c4,

LG := T
αβ,α′β ′
γ,γ ′ T

γ
αβT

γ ′
α′β ′ , T

αβ,α′β ′
γ,γ ′ = Det(F iα)

8χ
gγγ ′

(
gαα

′
gββ

′ − gαβ ′gα′β
)

There is a long last debate on the consistency of tele parallel gravity compared to
the theory of gravity developed with the curvature tensor as source of gravity. We do
not go into detail of this interesting debate, however we may explore new method to
be applied for relativistic gravitation and strain gradient continuum. Recently, some
authors have suggested to recover the theory of general relativity from continuum
mechanics e.g. Boehmer and Downes (2014) by starting to consider a Lagrangian
function of the type:

L := 1

2

m=15∑

m=1

cmδ
(αβ,α′β ′)
m(γ,γ ′) T

γ
αβT

γ ′
α′β ′

where cm are undetermined coefficients and δ(αβ,α
′β ′)

m(γ,γ ′) are the 15 possible com-
binations of the covariant ĝκν or contravariant ĝκν metric components of a
flat Minkowskian spacetime M . Replacing the curvature with the torsion-scalar
variable T or a scalar function of it constitutes the basis for the derivation of
the teleparralel gravity equivalent with the curvature-based gravitation either for
with or without spacetime e.g. Hayashi (1979), Ferraro and Fiorini (2011). In this



154 4 Gauge Invariance for Gravitation and Gradient Continuum

later reference, search of spherically symmetric vacuous spacetime is conducted
in presence of torsion tensor. This form is obtained by imposing isotropy of the
spacetime, and by adding the Lorentz invariance of the Lagrangian with respect to
all transformations defined by Eq. (2.24), they arrived to a function analogous to by
retaining only one elementm = 1 among the 15:

L = c1 ĝγ γ ′
(
ĝαα

′
ĝββ

′ − ĝαβ ′ ĝα′β
)
T
γ
αβT

γ ′
α′β ′ (4.108)

It should be stressed that the derivation of this (con)-torsion-based Lagrangian
which is merely an expression of the Lagrangian in tele parallel gravitation, and
by the way equivalent to the Hilbert–Einstein approach up to a surface term (see
Eq. (4.99)), was deduced from the symmetry of the skew-symmetry of the torsion
tensor with respect to covariant indices, the isotropy of the spacetime, and the
invariance of the Lagrangian with respect to Lorentz group. We remind however
that the paper (Boehmer and Downes 2014) rather directly used contortion tensor
rather the torsion tensor.

4.3 Gauge Invariance on a Riemann–Cartan Continuum

The Principle of Least Action may be used to express the laws of continuum
mechanics and relativistic gravitation. Symmetry transformations are changes in
the coordinates x̃μ(xα) that leave the action S := ∫M L (g,ℵ,�) ωn invariant.
Continuous symmetries (Lie group) are usually exploited to generate conservation
laws (the most known method comes from the Noether’s Theorem) e.g. Lazar and
Anastassiadis (2008). Remind that the accounting of the Lagrangian variation of any
tensor, for instance Δgαβ , includes the Eulerian variation and the variation due to
the “Lie derivative variation” according to Δgαβ = δgαβ + Lξ gαβ , Carter (1973),
Manoff (1999). The same principle holds for torsion and curvature. The goal of
this last section is to generalize the translational invariance by considering both
spatially-varying shifts ξ(x) e.g. Utiyama (1956) and coordinate transformations
x̃(x) that leave the action S invariant e.g. Lazar and Anastassiadis (2008).

Let consider the link between Minkowskian spacetime and global invariance.
Among all physical processes involving low energies, the gravitational field induces
weak forces compared to other fundamental forces acting in physics, it is called a
weak interaction. We have seen that in the absence of gravitation, the spacetime
reduces to four-dimensional Minkowskian spacetime M with metric ĝμν :=
diag{+1,−1,−1,−1} uniform all over spacetime. The group of transformations:
xμ → yμ = xμ + Λμν xν + εμ, where Λνμ (such that Λνμ + Λμν = 0), and εμ

constitute 10 constant parameters and define the isometry group of the spacetime,
called global Poincaré group of transformations (Lorentz rotations and translations)
e.g. McKellar (1981). In the following, we localize the Poincaré’s group of trans-
formations in order to develop the local gauge symmetry of Lagrangian function



4.3 Gauge Invariance on a Riemann–Cartan Continuum 155

L . More precisely, the localization consists in defining a non uniform and arbitrary
vector field ξμ(xν) on the manifold M .

4.3.1 Lie Derivative and Gauge Invariance

Starting from the causality principle, Lorentz transformations are not the only
symmetries of the Minkowski spacetime. Translation in space and translation in
time constitute also symmetries. In the sixties, Zeeman (1964) has shown that the
causality group is generated by the orthochronous Poincaré group together with
dilations. Later, Williams (1973) has shown that the complete Poincaré group is the
group that preserves the time-like vectors of the Minkowski spacetime, and even
further the Poincaré group follows from the principle of the invariance of the light
velocity.

4.3.1.1 Lie Derivative of a Vector, and 1-Form

Now we consider translations (space and time) as groups with smooth continuous
parameters denoted ξμ, called Lie groups. For the Lorentz transformations, there
are six transformations that generate the entire Lorentz group O(1, 3), three of
these generators are spatial rotations, and the other three generators are time-space
operators, called boosts. As physical interpretation, boosts are related to the change
of observer’s reference frame from another’s. Mathematically, Lorentz boosts and
spacetime translation that not necessary allow to bring you back to where you
started, the Poincaré group is not compact. Let report on Fig. 4.7 the elements for
defining the Lie derivative. On a manifold M , the mapping ψ(s, x) := ψs(x)
(s ∈ R) transforms the point x → y = ψε(x) for an infinitesimal value of the
parameter s = ε. Conversely we have x = ψ−ε(y). The tangent space TxM at x
is transformed by the linear tangent mapping dψε at x to the tangent space TyM
at the point y. Then the vector u is transformed as v = dψε [u], owing that the
two tangent spaces are not the same. For comparing u and v, we must pull back the
vector v to the vector v′ ∈ TxM , calculated as v′ := dψ−ε [v] where the linear
tangent mapping is defined at y. The Lie derivative of the vector u along the vector
field ξ generator of the mapping ψs is defined as:

Lξu := lim
ε→0

1

ε
{dψ−ε [u (ψε(x))]− u(x)} (4.109)

Fig. 4.7 Lie derivative of a
vector field. Calculus of the
difference v′ − u
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where the generator vector of the mapping ψε is defined as:

ξ := dψ(s, x)
ds

(4.110)

The derivation of various formulae of Lie derivative is given in appendix. The
necessity to introduce Lie derivative is due to the fact that we cannot merely take
the difference between components of the vector fields u and v to calculate the
derivative since they are not on at the same tangent space, it is necessary to pull
back v to v′.

Now, consider a metric-affine manifoldM (3Dmaterial continuum or 4D space-
time continuum), and spacetime local translation. Say an (active) diffeomorphism
which is a smooth invertible map ϕ : M → M . Let θ a scalar field on M , and a
new scalar field θ̃ defined as θ̃ (x) := θ [ϕ(x)], meaning that the initial scalar field is
pushed forward to a new manifold, using nevertheless the same coordinate values.
For instance the transformed 1-form under an active diffeomorphism (particular case
of Poincaré’s transformations e.g. McKellar (1981) of the form x̃ := x − ξ dλ (the
“small” term dλ ∈ R is introduced here to mean an infinitesimal diffeomorphism)
holds:

ũμ (x) = J αμ uα [x+ ξ (x) dλ] = uμ (x)+
[
ξα (x) ∂αuμ (x)+ uα (x) ∂μξα (x)

]
dλ

since J αμ (x) = δαμ+∂μξα (x) dλ, and where we might drop the dependence on x for
the simplicity of notation. With the help of formulae and definition in the appendix,
we obtain the Lie derivative of scalar, covariant and contravariant vectors:

δφ(x) := Lξφ(x) = ξα(x)∂αφ(x) (4.111)

δωμ (x) := Lξωμ (x) = ξα (x) ∂αωμ (x)+ ωα (x) ∂μξα (x) (4.112)

δuμ (x) := Lξ u
μ (x) = ξα (x) ∂αuμ (x)− uα (x) ∂αξμ (x) (4.113)

The relations (4.111)–(4.113) can be re-written by means of covariant derivatives as
follows:

Lξφ(x) := ξα(x)∇αφ(x) (4.114)

Lξωμ (x) := ξα (x)∇αωμ (x)+ ωα (x)∇μξα (x)+ ξα (x)ℵραμ (x) ωρ (x) (4.115)

Lξ u
μ (x) := ξα (x)∇αuμ (x)− uα (x)∇αξμ (x)− ξα (x)ℵμαρ (x) uρ (x) (4.116)

where ∇ and ℵ are connection and its torsion respectively. This is a rewriting of
the variations/Lie derivatives which have been a priori defined independently of any
connection on the manifold B.
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4.3.1.2 Lie Derivative of Metric, Torsion, and Curvature

For a 2-covariant tensor field on M , we accordingly obtain (by neglecting second
order terms in dλ):

g̃μν (x) = J αμ (x) J βν (x) gαβ (x+ ξ dλ)
= gμν(x)+

[
ξα(x)∂αgμν(x)+gαν(x)∂μξα(x)+gμα(x)∂νξα(x)

]
dλ (4.117)

= gμν(x)+
[
ξα(x)∇αgμν(x)+ gαν(x)∇μξα(x)+ gμα(x)∇νξα(x)

]
dλ

+ ξα (ℵγαν gμγ + ℵγαμ gγ ν
)
dλ = gμν(x)+ Lξ(x)gμν(x)dλ (4.118)

where the Lie derivative of the metric holds for compatible connection:

Lξ gμν := gαν∇μξα + gμα∇νξα + ξα
(ℵγαν gμγ + ℵγαμ gγ ν

)
(4.119)

It shows that the infinitesimal active transformation may be interpreted as generated
by a Lie derivative, including the torsion field effects e.g. Nakahara (1996). It
should be pointed out that Lξ(x)gμν (x) �= ξα (x)∇αgμν (x) = ∇ξ(x)gμν (x). First,
originally the Lie derivative needs no connection, second the vector ξ (x) are not
differentiated in the covariant derivative, and third the torsion has influence apart
for the Lie derivative. We remind that a metric gαβ (x) on a metric-affine manifold
M is compatible with the affine connection∇γ if and only if∇γ gαβ ≡ 0 on M . For
metric compatible and torsion free connection, the Lie derivative (4.119) reduces to
e.g. Marsden and Hughes (1983):

Lξ(x)gμν (x) = ∇μξν (x)+ ∇νξμ (x) (4.120)

The active diffeomorphism invariance of the metric induces the vanishing of this
tensor expressing the so called Killing’s equation. Its solutions are called the Killing
vector fields.

Remark 4.34 For the two conditions as torsion free and metric compatibility, the
Lie derivative Lξ(x)gμν (x) is equivalent to the variation δgαβ along the vector field
ξγ (x). This is not the case when one of these two conditions are not satisfied.

If the previous transformation is considered as a coordinate system change, i.e.
passive diffeomorphism xμ = x̃μ + ξμ (xα) dλ (re-labelling of coordinates), the
transformation rule for 2-covariant tensor holds (by retaining first order terms in
dλ):

g̃μν
(
x̃γ
) = J αμ

(
xγ
)
J βν
(
xγ
)
gαβ
(
xγ
)

= gμν
(
xγ
)+ [gαν

(
xγ
)
∂μξ

α
(
xγ
)+ gμα

(
xγ
)
∂νξ

α
(
xγ
)]
dλ (4.121)

where J αμ (x
γ ) = δαμ + ∂μξ

α (xγ ) dλ e.g. Kleinert (2000). We observe that
the right-hand-side of Eqs. (4.117) and (4.121) looks like each other whenever
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the metric is compatible with the connection. With respect to a (local) normal
coordinate system, the two equations are exactly the same, with however the
difference that the first expresses the change of the 2-covariant field by the active
diffeomorphism whereas the second expresses the metric 2-covariant tensor in terms
of the new coordinates. The passive diffeomorphisms group (covariance group)
characterizes the mathematical formulation of theory. The active diffeomorphisms
group (symmetry group) characterizes the relativity principle which is a physical
fact (Ehlers 1973). For short, two types of groups of transformations may be used
for relativistic gravitation, and also for strain gradient continuum theory. Hereafter,
we consider a diffeomorphism invariance in the sense of active transformation.

Remark 4.35 Definition of Lie derivative usually starts with the transformation
J αμ(x) := δαμ + ∂μξα(x) dλ, where λ is merely introduced to express that the
field ξ has infinitesimal amplitude. When considering a metric-affine continuum
(gravitation fields or generalized continuum models), it is worth to consider the
infinitesimal vector field on the manifold, and thus to use the covariant derivative
instead of the partial one. The infinitesimal transformation becomes:

J αμ (x) := δαμ+∇μξα(x)dλ = δαμ+∂μξα(x)dλ−Γ αμγ ξγ dλ−Tαμγ ξ
γ dλ (4.122)

where the two first terms are exactly the same as previously, whereas the contortion
tensor Kαμγ constitutes an additional gauge field. For instance in Banerjee and Roy
(2011), the skew symmetric part of the contortion tensor is replaced by a rotation
angle. The set of all gauge parameters allows us to highlight what they called
Hamiltonian gauge symmetries. However, its was shown that the Poincaré (see
hereafter) and the Hamiltonian gauge symmetries are equivalent, modulo the trivial
gauge transformations e.g. Banerjee and Roy (2011).

The Lie derivative along a vector field is a way of differentiating tensor fields
on the continuum e.g. Petrov and Lompay (2013). It is an advantageous method to
derive the Poincaré gauge theory (based on the transformations generated by the
local translation ξμ(xα)) because it is defined only from manifold structure of B,
without any reference to metric gαβ or to extra structure such as a connection Γ λαβ .
The metric, the torsion, and the curvature are independently varied for the general
case by using non uniform translational vector ξμ(xν) e.g. Lazar and Anastassiadis
(2008), limited to infinitesimal mapping. Whenever this vector represents a (virtual)
motion of a symmetry group, then its is referred to as a symmetry generator. The
most usual case is the Killing vector solutions. Let start with the definition of Lie
derivative from Eq. (A.23) in the appendix and applied to (0, 2) tensor g, (1, 2)
tensor ℵ, and (1, 3) tensor � e.g. Lovelock and Rund (1975):

Lξ gαβ = ξγ ∂γ gαβ + gγβ ∂αξγ + gαγ ∂βξγ (4.123)

Lξ ℵλαβ = ξγ ∂γℵλαβ − ℵγαβ ∂γ ξλ + ℵλγβ ∂αξγ + ℵλαγ ∂βξγ (4.124)

Lξ �λαβμ = ξγ ∂γ �λαβμ −�γαβμ ∂γ ξλ +�λγβμ ∂αξγ +�λαγμ ∂βξγ + �λαβγ ∂μξγ
(4.125)
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In addition to the infinitesimal transformations of the spacetime coordinates δxα,
these “Lie variation” of metric, torsion, and curvature define the changes of gravity
fields. The four arbitrary functions ξα(xμ) define an arbitrary local diffeomorphism.
For an affinely connected manifold endowed with a metric, the knowledge of the
torsion and curvature tensors are sufficient to determine locally both the metric,
and the affine connection. This permits to consider the variation up to “second
derivatives”. Moreover, the local transformations ξμ(xα) which extend the concept
of Poincaré’s local group of transformations permits to define the change of these
three variables (arguments of the Lagrangian function) following a generalized
coordinate transformations.

Remark 4.36 Lie derivative of tensor is also a tensor. For the proof, it is sufficient
to rewrite it in terms of covariant derivatives (2.33) and torsion tensor. We obtain
the relations for the metric:

Lξ gαβ = ξγ ∇γ gαβ + gγβ ∇αξγ + gαγ ∇βξγ + ξγ
(
gαν ℵνγβ + gνβ ℵνγ α

)
,

(4.126)
for torsion:

Lξ ℵλαβ = ξγ ∇γℵλαβ − ℵγαβ ∇γ ξλ + ℵλγβ ∇αξγ + ℵλαγ ∇βξγ

− ξγ ℵλγ ν ℵναβ + ξγ ℵνγ α ℵλνβ + ξγ ℵνγβ ℵλαν, (4.127)

and for curvature:

Lξ �λαβμ = ξγ∇γ�λαβμ − �γαβμ∇γ ξλ +�λγβμ∇αξγ + �λαγμ∇βξγ + �λαβγ∇μξγ

− ξγ�ναβμℵλγ ν + ξγ�λνβμℵνγ α + ξγ�λανμℵνγβ + ξγ�λαβνℵνγμ (4.128)

Relations (4.126)–(4.128) are the expressions of Lie derivative in Riemann–
Cartan and metric-affine manifolds. However, the connection ∇ appearing in these
relationships include the torsion tensor and cannot utilized in practise to solve
the conservation laws in continuum physics, and theory of gravitation. These
expressions should be modified to separate the Levi-Civita connection and the
contortion tensor Tγαβ which become an unknown variable.

4.3.2 Poincaré’s Group of Transformations

The invariance of the velocity of light, which is strongly related to the causality
principle, allows us to deduce that the Poincaré group of transformations is the
invariance group of relativistic gravitation e.g. Williams (1973), Zeeman (1964)
(for this later reference, the theorem is focused to Lorentz group O(1, 3) which
is a subgroup of Poincaré group). From the metric tensor, we can define the group
of Poincaré in classical and relativistic mechanics e.g. Ali et al. (2009), Capoziello
and de Laurentis (2009), Kibble (1961), McKellar (1981). Gauge transformations
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were originally introduced by Weyl (1918) to relate gravitation and electromagnetic
fields. Later, the work of Yang and Mills (1954), generalized by Utiyama (1956),
treated the non commutative group of internal symmetries for relativistic gravitation
and spins. With the help of fundamental results on manifolds with torsion Cartan
(1986), Kibble (1961) used the inhomogeneous Lorentz group to derive the gauge
invariance for relativistic gravity. In the same way, we consider the local group
of transformations: yμ = A

μ
ρ (x

α) xρ + ξμ (xα). The local spacetime translation
ξμ(xα) is added to the transformations Aμρ (xα). In fact, the next step considers
a modification of this local Poincaré transformations by only retaining the trans-
formation ξμ (xα) that can include the so-called Poincaré’s local transformations
e.g. Capoziello and de Laurentis (2011), which could be interpreted as a general
coordinate transformations.4 This allows us to obtain the Poincaré group, which is
also called full inhomogeneous Lorentz group, a subgroup of this later restricted by
the condition (cf. isometry definition (2.23)):

ĝμν A
μ
ρ J

ν
σ ≡ ĝρσ (4.129)

where ĝμν are the components of a nonsingular symmetric tensor with signature
−2. It can be observed that such a metric ĝ has numerically the same components in
all allowed coordinate systems, according to the tensor components transformation
rules. The Minkowskian metric is a typical example of such a tensor. Indeed, in a
(flat) spacetime, the Minkowskian metric ĝαβ , and its inverse ĝαβ have (diagonal)
matrix components as in e.g. Havas (1964) (in some sense we introduce here the line
element ds2 = c2[dt2−(1/c2)(dx2+dy2+dz2) := c2 ĝαβdxαdxβ for determining
the inverse of the metric and then the metric itself):

ĝαβ := diag
(

1,−c−2,−c−2,−c−2
)
, ĝαβ := diag

(
1,−c2,−c2,−c2

)

(4.130)

where c is the light speed. The determinant of Aμρ is equal to ±1. As only six
of the components of the transformations Aμρ are independent, the Poincaré’s
group contains ten independent components. The group may be reduced to the
inhomogeneous Galilean group if the following additional conditions are accounted
for:

A0
0 = ±1, A0

i = 0, Aik (A
T)kj ≡ δij (4.131)

where Latin indices vary from 1 to 3. The upper index T holds for the tensor
transpose. This later equation expresses that Aik reduces to the group of orthogonal
transformations of the three-dimensional space. For the Galilean group, we can
introduce two separated space like and time like metrics by considering the

4As shown by Kibble (1961), the Lagrangian density of the form L (xμ,Φ, ∂αΦ, ∂β∂αΦ) should
be replaced by a Lagrangian of the form L (Φ,∇αΦ,∇β∇αΦ)√Detg which is invariant under a
general coordinates transformations, which are nothing else than Poincaré’s local transformations.
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following limits (the second definition implicitly assumes the unity c = 1) e.g.
Havas (1964):

ĥαβ := lim
c→∞

ĝαβ(c)

c2 = diag (0,−1,−1,−1) , (4.132)

τ̂ατ̂β = τ̂αβ := lim
c→∞ ĝαβ(c) = diag (1, 0, 0, 0) (4.133)

We obtain the metric ĝαβ := ĥαβ + τ̂αβ . The (non tensorial) conditions (Eq. 4.131)
are equivalent to:

{
τ̂μν A

μ
ρ A

ν
σ = τ̂ρσ

ĥμν A
ρ
μ A

σ
ν = ĥρσ

(4.134)

We note that both the two tensors τ̂ and ĥ taken separately are singular. They
satisfy the condition τ̂μρ ĥρν = 0 (orthogonality condition) e.g. Bain (2004).
These conditions again restrict the number of independent parameters to 10 for the
Galilean group.

Remark 4.37 Wigner first realized that the true symmetry group for particle physics
is not the homogeneous Lorentz group SO+(1, 3). Rather, the underlying symmetry
group for particle physics must consist of translations in spacetime in addition
to the Lorentz generators which are called boosts and rotations. The extension to
inhomogeneous Lorentz group leads to the Poincaré group (cf. the reprint of a 1939
paper Wigner 1939). This should be related to the work of Williams in e.g. Williams
(1973) which shows that the Poincaré group in relativistic theory follows from the
invariance of the light velocity, and by the way from the causality principle (Zeeman
1964).

4.3.3 Poincaré’s Gauge Invariance and Conservation Laws

Covariance requires that Lagrangian L displays the same functional form in
terms of transformed arguments as it does in terms of the original arguments
(metric, torsion, and curvature tensors).5 Under a change of coordinate system
(passive diffeomorphism) the Lagrangian is a scalar (when multiplied by the
volume form) whose shape and value are left unchanged. Say L (gαβ,ℵγαβ,�λαβμ),
for either spacetime or strain gradient matter. We now consider the symmetry
group by considering the coordinate transformations following infinitesimal local
translations that generalize the uniform translations of Newtonian mechanics to
(active) diffeomorphisms, which include local translations, and local rotations. It

5The dependence on coordinates xμ is dropped according to results in e.g. Kibble (1961).
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constitutes in some sense the Poincaré’s group of transformations e.g. McKellar
(1981) for 4 dimensional spacetime. In addition to the 3 rotation and 3 boost
generators, the Poincaré’s group includes 4 translation generators. There are thus
10 generators in the Poincaré’s group.

It should be noticed that, as for metric variables (Carter 1973) and by analogy
to the variations in Manoff (1999), there are also three set of variations: the
Lagrangian (comoving) variations (Δgαβ,Δℵγαβ,Δ�λαβμ) which is the sum of

the Eulearian (fixed point) variations (δgαβ, δℵγαβ, δ�λαβμ) and the Lie derivative

variations (Lξ gαβ,Lξℵγαβ,Lξ�λαβμ). Now consider the Lie derivatives along the
arbitrary vector field ξμ(xα) which are particular class of variations. Lie derivatives
are closely related to the gauge invariance and conservation laws due to the presence
of this arbitrary vector field. The basic principle is to express the Lie derivatives
of metric, torsion, and curvature along a an arbitrary (non uniform) vector field
and to deduce the conservation laws after imposing the gauge invariance. When the
volume-form ωn := √Detg dx0 ∧ · · · ∧ dxn includes the determinant of the metric,
the above Lagrangian function L becomes a scalar (tensor) and not a density.

The Lagrangian is modified when the trajectory is shifted following an active
diffeomorphism, such as generalized (local) translation ξ(xν) on the manifold. For
some shifting, the action may be left e.g. Petrov and Lompay (2013), and then
these (virtual) translations define the symmetries of the problem. In this section,
we consider the conservation laws that govern the continuum when the trajectory
is (infinitesimally) shifted while the action is left unchanged. We need to find
trajectory that makes the action stationary (Principle of Least Action) and the
resulting necessary (and hopefully sufficient) condition will be conservation laws
e.g. Capoziello and de Laurentis (2009). Global translation invariance implies the
conservation laws for linear momentum, and a global rotation to the conservation
laws for angular momentum. We now apply the (active diffeomorphism invariance)
to extend the equation of Killing, and its solutions, to the Killing vector in the
framework of Riemann–Cartan manifold. For that purpose, we suggest to analyze
the change of the action integral under an active diffeomorphism:

ΔS := S
[
xμ(τ)+ ξμ[xν(τ )] dλ]−S

[
xμ(τ)

]
(4.135)

where dλ is a small parameter and τ time parameter. Neglecting terms of higher
order than O(dλ), this difference gives:

ΔS = dλ
∫ x0=τf

x0=τi

∫

B

(
σαβLξ gαβ +Σαβγ Lξℵγαβ +Ξαβμλ Lξ�λαβμ

)
ωn

(4.136)
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4.3.3.1 Lagrangian of the FormL (gαβ)

For the sake of the simplicity, we consider Lagrangian function depending only on
gαβ as explicit primal variables. For Riemann–Cartan manifold, it may model some
class of elastic continua with possible change of internal structure since the torsion
ℵγαβ is implicitly an argument as intrinsically a part of the connection Γ γαβ .

Theorem 4.3 Let a metric-affine continuum (B, g,∇) with a Lagrangian function
L (gαβ), depending only on the metric tensor. The connection is assumed metric
compatible. If the Lagrangian is gauge invariant under the vector field ξμ(xα) then
the following conservation law holds:

∇ασαγ + σαλ ℵλαγ = 0 (4.137)

where tensorial function σαβ(gλμ) defines the constitutive laws of the continuum.

Proof After a straightforward calculus, and by using the formula for the covariant
derivative of (1, 0) vector ξμ(xν), the Lie derivative for metric is given by
Eq. (4.126), where we observe in the last term the influence of torsion field. Let
now consider a continuum with the Lagrangian L (gαβ) depending only on the
metric. The Lagrangian is gauge invariant if for any vector field ξμ(xν), the action
S remains unchanged. Then, we can define the constitutive laws (relating “stress”
in function of “strain”) and write:

σαβ Lξ gαβ = σαβ
[
ξγ∇γ gαβ+gγβ∇αξγ+gαγ∇βξγ + ξγ

(
gαν ℵνγβ + gνβℵναγ

)]

where the “stress” σ is defined as:

σαβ := ∂LM

∂gαβ
− LM

2
gαβ

Factorize the vector ξβ . By accounting for the metric compatibility of the connec-
tion, and by eliminating the divergence term which may be shifted at the boundary
(and worthily chosen to vanish at the boundary ∂B), we arrive at the conservation

laws: 2∇ασαγ − σαλ
(
ℵλαγ + ℵλαγ

)
= 0 leading to ∇ασαγ + σαλ ℵλαγ = 0, showing by

the way that independently on the values of the torsion field, the conservation laws
holds as Div σ = 0 in coordinate-free form e.g. Marsden and Hughes (1983), and
here in a covariant form. ��
Remark 4.38 It should be pointed out that the considered connection is the contin-
uum connection (for instance the material connection in the large deformation of
elastic continuum with a distribution of dislocations e.g. Le and Stumpf 1996), then
the following coefficients of connection are used: Γ γαβ = Γ γαβ + Dγαβ + Ωγαβ with

the Levi-Civita connection Γ
γ

αβ , the anholonomy Ωγαβ := (1/2) ℵγαβ , and Dγαβ :=
gγλgαμ Ω

μ
λβ + gγλgμβ Ωμλα. They define the contortion tensor Tγαβ := Ωγαβ +Dγαβ .
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Continuum B is a metric-affine manifold but Lagrangian is assumed to depend only
on metric. The contortion tensor is a source of space fading of waves within strain
gradient elastic matter e.g. Antonio et al. (2011), Futhazar et al. (2014).

Remark 4.39 Although the action involves only the metric tensor, we notice the
presence of torsion “force” in the conservation laws. It will always be the case
whenever the continuum is modeled by a Riemann–Cartan manifold with non
vanishing torsion and curvature.

4.3.3.2 Lagrangian of the FormL (ℵλ
αβ

)

Consider a Lagrangian function depending explicitly on and only on torsion tensor
as primal variables. It models some spacetime continua in the framework of tele
parallel gravitation.

Theorem 4.4 Let a Riemann–Cartan continuum (B, g,∇) defined by a
Lagrangian L (ℵλαβ), depending on the torsion tensor. The connection is assumed
metric compatible. If the Lagrangian is gauge invariant then the conservation law
holds:

∇λ
(
Σλβα ℵαγβ

)
−Σαβλ

(
ℵνγβℵλαν

)
= 0 (4.138)

where hypermomenta functionsΣαβλ (ℵλαβ) define the continuum constitutive laws.

Proof Let write the Lie derivative of torsion in terms of covariant derivatives
from Eq. (4.127). Lie derivative of torsion is coupled neither to metric nor to
curvature. Consider a continuum with the Lagrangian L (ℵλαβ) depending only on
torsion. The Lagrangian is gauge invariant if for any vector gauge, the action S

remains unchanged, meaning that Σαβλ Lξ ℵλαβ = 0 for any vector field ξμ(xν). A
straightforward calculus leads to the conservation laws after factorizing ξγ :

∇λ(Σαβγ ℵλαβ −Σλβα ℵαγβ −Σαλβ ℵβαγ︸ ︷︷ ︸
= 2 Σαλβ ℵβγα

)

+ Σαβλ (∇γℵλαβ − ℵλγ νℵναβ + ℵνγ αℵλνβ + ℵνγβℵλαν︸ ︷︷ ︸
= 2 ℵνγβℵλαν

) = 0

where divergence terms have been eliminated by means of boundary conditions. If
the Lagrangian does not depend on the curvature then from the relation (4.72), we
deduce that Σαβγ = Σβαγ . This permits to obtain relation (4.138). ��
A Lagrangian depending only on torsion may be introduced to describe edge and
screw dislocations, they called quadratic gauge translational Lagrangian. Inspiring
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from the tele parallel formulation of the Einstein–Hilbert Lagrangian, the incompati-
bility of deformation resulting from edge and screw dislocation fields is summarized
by Malyshev into the LagrangianL := (−2κ)(∂αφiβ−∂βφiα)(∂αφβi −∂βφαi ), where
the coefficient κ is a “coupling” constant (Malyshev 2000). He introduced gauge
fields including vector δui and tetrad δφiβ . Conversely, we have considered here

one vector ξ i(xμ) := δui as gauge field resulting to a only one conservation laws.
Einstein–Hilbert Lagrangian density LHE would be a better model for capturing
both edge and screw dislocations, thanks that this Lagrangian is expressed in terms
of matter contortion tensor Tγαβ as in Eq. (4.97) e.g. Malyshev (2000).

4.3.3.3 Lagrangian of the FormL (�λ
αβμ

)

Let consider a Lagrangian depending on and only on the curvature tensor as
primal variables. It models spacetime continua in the framework of curvature-
based gravitation. For the curvature, the Lie derivative holds from Eq. (4.128),
where the second line vanishes for torsionless manifold. When the dependence
is on the Ricci curvature, we may write L (�αβ). This is particularly convenient
for three-dimensional manifold, for which the Ricci curvature entirely defines the
Riemann–Cartan curvature tensor. Let consider the Einstein–Hilbert Lagrangian
density where the metric and the connection (then the curvature) are independent:
L = (1/2χ)gαβ�αβ . The Lie derivative of the Lagrangian along vector field ξ
gives (do not confuse the notation for Lie derivative and the Lagrangian): ΔL =
(1/2χ) �αβ Lξ g

αβ + (1/2χ) gαβ Lξ�αβ with:

Lξ�αβ = ξγ ∇γ�αβ +�γβ ∇αξγ +�αγ ∇βξγ + ξγ
(
�αν ℵνγβ + �νβ ℵναγ

)

Lξ g
αβ = −gαμ gνβ Lξ gμν

= −
(
gαμ∇μξβ + gμβ∇μξα + ξγ gμβ ℵαγμ + ξγ gαμ ℵβμγ

)

when accounting for metric compatibility of the connection. Introducing these two
previous equations in the variation of the Lagrangian gives:

ΔL = (1/χ)ξβ ∇α�αβ − (1/χ)∇α
(
�αβξβ

)
−
(
�μαℵαβμ + �μαℵαμβ

)

︸ ︷︷ ︸
≡0

ξβ

+ (1/χ)ξβ ∇βR− (1/χ)ξβ ∇α�αβ + (1/χ)∇α
(
�αβ ξβ

)

+
(
ℵνγβ�γν + ℵνβγ�γν

)

︸ ︷︷ ︸
≡0

ξβ

= (1/χ) ξβ ∇βR
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Consider now a non uniform vector field ξβ(x) �= 0 (gauge fields), the invariance
with respect to this active diffeomorphism allows us to deduce the conservation
laws, without transferring the divergence terms to the boundary conditions, ∇βR =
0. This result means that curvature remains constant on the continuum B for an
arbitrary continuous symmetry generated by the vector field ξ (local translation).
Nevertheless this equation can be completed by including the volume-form change
as: Lξ (Rωn) =

(
LξR

)
ωn+RLξωn. Lie derivative can be re-written as follows for

a particular volume-form:

Lξ (Rωn) =
[
Lξ
(�αβgαβ

)√
Detg+ RLξ

√
Detg

]
dx0 ∧ · · · ∧ dx3

= (GαβLξ gαβ + gαβLξ�αβ
)
ωn

where the Lie derivative of the Ricci tensor may be transferred to the manifold
boundary ∂M , and thus can be skipped. Indeed we recover the classical vacuum
equations of gravitation in general relativity. However, gauge invariance allows us to
obtain the influence of scalar curvature on Lagrangian, for either gradient continuum
or relativistic gravitation. We can express the “vacuum equations” as:

Lξ ((1/2χ)Rωn) =
(
(1/2χ)GαβLξ gαβ

)
ωn, Gαβ := �αβ − (�/2) gαβ

(4.139)
Introducing the expression of the metric Lie derivative (4.119) we obtain:

GαβLξ gαβ = Gαβ
[
gμβ∇αξμ + gαμ∇βξμ + ξμ

(
ℵγμβ gαγ + ℵγμα gγβ

)]

By transferring the divergence term at the manifold boundary, and owing that
Gαβ = Gβα we deduce the local equations for the vacuum spacetime with torsion
(or equivalently a continuum with non zero torsion and non zero curvature but for
which Lagrangian density L depends only on curvature):

∇αGαβ = ℵγβα Gαγ (4.140)

Relationship of (4.140) with Bianchi identities (4.73) should be clarified in the
future.

Remark 4.40 In the scope of Einstein gravitation, the connection Γ
γ

αβ is deduced
from the metric tensor gαβ . The second Bianchi identity thus induces that the
Einstein tensor Gαβ := �αβ − (R/2)gαβ is divergence-free. We observe that such
is not the case for the Einstein–Cartan gravitation (4.140). It is worth to remind
that divergence-free property of the Einstein tensor may directly be deduced from
the second Bianchi identity extended to metric-affine manifold e.g. Rakotomanana
(2003). In the same way, we may also check that the second Bianchi identity (4.73)
allows us to obtain the previous relationship assessing that the divergence of the
analogous Einstein tensor is not divergence free.
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Remark 4.41 We now focus on the difference between Einstein relativistic grav-
itation vs Einstein–Cartan relativistic gravitation that may be sketched in the
following. Consider a continuum matter B evolving within a spacetime (either
Einstein spacetime or Einstein–Cartan spacetime). We consider that the action of
this continuum is calculated by a Lagrangian including the gravitation and the matter
as:

S =
∫

B

(
− 1

2χ
R+LM

)
ωn (4.141)

where LM stands for the matter contribution whereas R is the spacetime curvature
(we limit to Einstein–Hilbert action for capturing the gravitational effects). For Ein-
stein relativistic gravitation within a curved Riemannian spacetime e.g. Nakahara
(1996), we have after a standard variational procedure, assuming worth boundary
conditions, to the field equations:

1

2χ
G
αβ = T αβ (4.142)

where T
αβ

is the energy-momentum tensor (2.80) and with:

⎧
⎪⎨

⎪⎩

Γ
γ

αβ := (1/2)gγλ
(
∂αgλβ + ∂βgαλ − ∂λgαβ

)

ℵγαβ = 0

�λαβμ := (∂αΓ λβμ + Γ νβμΓ λαν)− (∂βΓ λαμ + Γ ναμΓ λβν) �= 0

(4.143)

and then, we deduce:

⎧
⎪⎨

⎪⎩

G
αβ := �αβ − (�/2) gαβ (Einstein tensor)

∇αGαβ = 0 (Bianchi second identity)

∇αT αβ = 0 (Conservation laws)

(4.144)

The conservation laws result from the second identity of Bianchi e.g. Rakotomanana
(2003) (in this reference, Bianchi identities are derived in the framework of
Einstein–Cartan manifolds). For Einstein–Cartan relativistic gravitation, the Levi-
Civita connection is replaced by an affine connection:

⎧
⎪⎨

⎪⎩

Γ
γ
αβ := uγ

(∇uαuβ
)

ℵγαβ = Γ
γ
αβ − Γ γβα

�λαβμ := (∂αΓ λβμ + Γ νβμΓ λαν)− (∂βΓ λαμ + Γ ναμΓ λβν)− ℵν0αβΓ λνμ �= 0
(4.145)

showing that the torsion is now an additional independent geometric variable of the
continuum motion.
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We propose in the next subsection a general framework to model the coupling of
generalized continua with a curved spacetime with torsion. Equation (4.144) should
be re-derived in deep. The first point is the inclusion of the torsion as independent
variable. The second point is to highlight that the covariant derivative associated
to the connection implicitly contains the torsion which is an unknown variable. It
is not useful as such in practise. It is necessary to split the connection with unique
decompositionΓ γαβ = Γ γαβ+Tγαβ where Tγαβ is the contortion tensor (see Eq. (2.44)).

4.3.4 Conservation Laws in a Curved Spacetime with Torsion

Let consider a generalized continuum (B, g,∇) evolving within a spacetime
(M , ĝ, ∇̂), both of them are modeled with Riemann–Cartan manifold. We adopt
the definition of generalized transformations where metric strain εαβ , changes of
topology T

γ
αβ and K

γ
αβλ are the primal variables.

4.3.4.1 Lie Derivatives on Metric Compatible Manifolds

We develop in this paragraph some basic expressions of the Lie derivatives for
vector, 1-form, metric, torsion and curvature in terms of the Levi-Civita connection
∇ and the contortion tensor T.

Theorem 4.5 Let (B, g,∇) a Riemann–Cartan manifold, where the connection ∇
is metric compatible, and say ∇ the Levi-Civita connection associated to the metric
g. Then, we have respectively the following Lie derivative of vector uμ, 1-form ωμ,
metric gαβ , and the torsion ℵγαβ :

Lξ u
μ = ξα∇αuμ − uα∇αξμ (4.146)

Lξωμ = ξα∇αωμ + ωα∇μξα (4.147)

Lξ gαβ = gαγ∇βξγ + gγβ∇αξγ + gαγTγρβξρ + gγβTγραξρ (4.148)

Lξℵλαβ = ξγ∇γℵλαβ − ℵγαβ∇γ ξλ + ℵλαγ∇βξγ − ℵλβγ∇αξγ (4.149)

Proof Starting with the relation (4.114) and owing that: ∇αuμ = ∇αuμ + T
μ
αρu

ρ

and ∇αξμ = ∇αξμ + T
μ
αρξ

ρ , we deduce the first relation by accounting for the
decomposition of the contortion T

μ
αρ = D

μ
αρ + Ωμαρ into a symmetric part and a

skew-symmetric part. By using the same method, starting from relation (4.114) and
owing that:

∇αωμ = ∇αωμ − Tραμωρ, ∇μξα = ∇μξα + Tαμρξ
ρ
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we obtain the second relation. We start with Eq. (4.126). By accounting for the
metric compatibility of the connection ∇ and using the following relations:

T
γ
βρ = Ωγβρ +Dγβρ = −

1

2
ℵγρβ +Dγρβ �⇒ T

γ
βρ + ℵγρβ =

1

2
ℵγρβ +Dγρβ = T

γ
ρβ

The same relation holds for Tγαρ + ℵγρα = T
γ
ρα . This allows us to deduce the third

relation. The Lie derivative of the torsion is obtained with analogous method. First
from the original definition of the Lie derivative we introduce the relations:

⎧
⎪⎨

⎪⎩

∇γℵλαβ = ∂γℵλαβ + Γ λγρℵραβ − Γ ργαℵλρβ − Γ ργβℵλαρ
∇αξγ = ∂αξγ + Γ γαρξρ
∇βξγ = ∂βξγ + Γ γβρξρ

Introducing these relations into the definition of the Lie derivative of ℵγαβ leads
to Eq. (4.127). Finally, introducing the contortion tensor into the torsion covariant
derivative, we have:

∇γℵλαβ = ∇γℵλαβ + Tλγρℵραβ − Tργαℵλρβ − T
ρ
γβℵλαρ

which allows us to obtain the Lie derivative of the torsion ℵγαβ in terms of the Levi-
Civita connection. ��
Remark 4.42 The relation Lξ u

μ = ξα∇αuμ − uα∇αξμ conforms to the intrinsic
formulation of the Lie derivative of a contravariant vector Lξu := ∇ξu − ∇uξ −
ℵ(ξ,u) where ℵ is the torsion operator for any affine connection with torsion e.g.
Manoff (2001b).

4.3.4.2 Lagrangian of the FormL (gαβ,T
γ

αβ
)

Let now combine the two aspects, the first is the requirement of gauge invariance
for the Lagrangian, and second the dependence of the Lagrangian not on the
torsion but on the metric and the contortion tensor. First of all, the covariance
theorem implies that a Lagrangian of the form L (gαβ, Γ

γ
αβ) should be formulated

as L (gαβ,ℵγαβ). Secondly, if we want the Lagrangian to depend on the change

of internal topology, the dependence becomes L (gαβ,T
γ
αβ). This is not exactly

the same as the Lagrangian proposed in Maier (2014) where the solutions of
vacuum spacetime in non-Riemannian gravitation is investigated. Owing that the
contortion tensor includes a skew-symmetric and a symmetric terms (2.44) for
metric compatible connection:

Ω
γ
αβ = (1/2)(Γ γαβ − Γ γβα), D

γ
αβ = gγλgαμ Ωμλβ + gγλgμβ Ωμλα
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we can assume the form L (gα,T
γ
αβ). In this paragraph we define the two momenta

by their constitutive laws, slightly modified for the second one because the matter
dependence is assumed on contortion instead on the torsion,

σαβ := ∂L

∂gαβ
− L

2
gαβ, Σαβγ := ∂L

∂T
γ
αβ

(4.150)

whereΣαβγ is called the spin angular momentum tensor of matter (Hehl et al. 1976).
The Eulerian (fixed point) variation of the corresponding action takes the form of:

δ(L ωn) =
(
σαβ δgαβ +Σαβγ δT

γ
αβ

)
ωn.

After a straightforward calculus, we obtain the two contributions of the variation
leading to the field equations, the first factor of the metric δgαβ (symmetric), and
the second factor of the anholonomy δΩγαβ (skew-symmetric with respect the two
lower indices):

⎧
⎨

⎩

σαβ −Σκνγ gγα
(
gκμΩ

μ
λν + gμνΩμλκ

)
gλβ + gγλ

(
Σακγ Ω

β
λκ +Σκβγ Ωαλκ

)
= 0

Σ
αβ
γ + gγλ

(
gαμΣ

λβ
μ − gβμΣαλμ

)
= 0

(4.151)
in which it is reminded that the hypermomentum Σ

αβ
γ is neither symmetric nor

skew-symmetric with respect to the two upper indices. Therefore, the second
equation (4.151) should be used very cautiously and even modified. It should be
rewritten as follows:

(1/2)
(
Σαβγ −Σβαγ

)
+ gγλ

(
gαμΣλβμ − gβμΣαλμ

) = 0 (4.152)

This means that only the skew-symmetric part of Σαβγ with respect the two indices
(α, β) only should be taken into account in the relation. For establishing the above
conservation laws, it was necessary to calculate the variation of gγλ as follows:

δ
(
gγλgλμ

) = 0 �⇒ δgγλ = −gγ κδgκνgνλ (4.153)

This Eq. (4.152) is the angular momentum equation for this matter model. We
observe that the conservation laws deduced from relations (4.151) are very different
of those models where the metric and the torsion are considered as the primal
variables. We do not develop details of the expected conservations laws since
we will proceed to that later. The keypoint is here to consider the change of
connection with respect to the Levi-Civita connection (contortion) as the primal
variable modeling the internal change of topology. It seems that this keypoint is a
physical assumption rather than a mathematical consequence of covariance or any
other invariance principle.
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4.3.4.3 Alternative Formulation forL (gαβ,T
γ

αβ
)

Consider the same system as in the previous paragraph and focus is on the
conservation laws. Alternative and simpler derivation of conservation laws may be
conducted by considering the Lie derivative of metric and contortion (the proof is
done by a straightforward calculus):

{
Lξ gαβ = ∇αξβ +∇βξα + gαγTγρβξρ + gγβTγραξρ
LξT

γ
αβ = ξρ∇ρTγαβ − T

ρ
αβ∇ρξγ + T

γ
ρβ∇αξρ + T

γ
αρ∇βξρ

Theorem 4.6 Let a continuum matter (B, gαβ, Γ
γ
α ) modeled with Riemann–

Cartan manifold, in motion within a Riemann–Cartan spacetime (M , ĝαβ, Γ̂
γ
α ).

The Lagrangian of the continuum is assumed to depend on the metric and on the
contortion tensor L (gαβ,T

γ
αβ). The conservation laws hold for continuum matter

with arbitrary contortion field and for which Lagrangian depends on the contortion
explicitly

∇α
(
gρβσ

αβ +Σαβγ T
γ
ρβ

)
+∇β

(
gαρσ

αβ +Σαβγ Tγαρ

)
=

σαβ
(
gαγT

γ
ρβ + gγβTγρα

)
+Σαβγ ∇ρTγαβ +Σαβρ ∇γTγαβ (4.154)

Proof Starting from the variational formula: δL = σαβLξ gαβ + Σαβγ LξT
γ
αβ , we

introduce the previous formulae of Lie derivatives of Lξ gαβ and LξT
γ
αβ . By shifting

to the boundary ∂B all the divergence terms ∇α(· · · ) and after factorization by ξρ ,
we obtain:

δL =
[
σαβ

(
gαγT

γ
ρβ + gγβTγρα

)
+Σαβγ ∇ρTγαβ +Σαβρ ∇γTγαβ

]
ξρ

−
[
∇α
(
gρβσ

αβ +Σαβγ T
γ
ρβ

)
+∇β

(
gαρσ

αβ +Σαβγ Tγαρ

)]
ξρ

+ boundary terms on ∂B

This allows us to obtain the conservation laws:

∇α
(
gρβσ

αβ +Σαβγ T
γ
ρβ

)
+∇β

(
gαρσ

αβ +Σαβγ Tγαρ

)

= σαβ
(
gαγT

γ
ρβ + gγβTγρα

)
+Σαβγ ∇ρTγαβ +Σαβρ ∇γTγαβ �

We observe that some additional terms are present in the divergence operator,
σαβ becomes gρβσαβ + Σαβγ T

γ
ρβ . It is pointed out that the divergence operator is

associated to the Levi-Civita connection.
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Corollary 4.3 We deduce from (4.154) the following conservation laws:

1. for classical continuum matter B with zero contortion T
γ
αβ ≡ 0

∇ασαρ = 0 (4.155)

2. for continuum matter B with uniform contortion and with Lagrangian not
depending explicitly on contortion, say Σαβγ ≡ 0,

∇ασαρ = σβγ Tγρβ (4.156)

The conservation laws Eq. (4.156) are easier to handle than (4.137) because the
divergence operator does not contain the torsion implicitly. This advantage is
particularly obvious when deriving equations in Cartesian coordinate system. The
two conservation Eqs. (4.155) and (4.156)—(which can be related to Eq. (4.137))—
govern the classical Einstein gravitation and continuum mechanics e.g. Marsden
and Hughes (1983), and the generalized continuum mechanics with torsion e.g.
Rakotomanana (1997), respectively. These conservation laws are similar to those
of Yasskin and Stoeger in e.g. Yasskin and Stoeger (1980) (equation 19 in this ref-
erence) and even extend them to the coupling of non zero torsion and curved matter
and spacetime. Equation (4.155) reduces to the Einsteinian relativistic gravitation
equation of fields, which can be obtained by means of Bianchi (4.73) identities too.

Remark 4.43 First, it is worth to remind that the contortion T
γ
αβ is a tensor and

therefore its intrinsic properties does not depend on the choice of the coordinate
system xμ. The conservation laws (4.156) are covariant in which the contortion
tensor behaves as primal variables and unknowns. Implicitly, the metric tensor gαβ
captures a holonomic deformation whereas the evolution of the contortion tensor
T
γ
αβ captures the non holonomic part of the deformation. In principle, an additional

conservation laws should be derived due to the increase of unknowns number. How-
ever, modelling the evolution of the contortion tensor as internal variables might be
based on thermomechanics of dissipating continuum e.g. Rakotomanana (2003).

4.3.4.4 Lagrangian of the FormL (εαβ,T
γ

αβ
,K

γ

αβλ
)

Let consider a continuum body (B, g,∇) in motion in the spacetime (M , ĝ, ∇̂)
(which may be assumed Minkowskian for the sake of the simplicity) where the
Lagrangian depends on the strain, the contortion and the change of curvature
according to the relations (4.95), (4.97), and (4.99):

⎧
⎪⎨

⎪⎩

2εαβ := gαβ − ĝαβ
T
γ
αβ := Γ γαβ − Γ γαβ

[
gλμ, ∂νgλμ

]

K
γ
αβλ := ∇αTγλβ −∇βTγλα +

(
T
γ
βμT

μ
αλ − T

γ
αμT

μ
βλ

)
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The first relation expresses the strain of the matter B with respect to the Minkowski
spacetime M . In fact, we can replace the strain εαβ by the metric gαβ without
loss of the generality of our purpose. The second and third relations are merely the
change of the connection from its Levi-Civita part to the actual connection which is
curved with non zero torsion. In the remaining part of this paragraph we consider
gαβ instead of εαβ . Introducing these relations within the Lagrangian arguments, we
suggest the Lagrangian function with a slightly modified list of arguments:

L := L
(
gαβ,T

γ
αβ,∇λTγαβ

)
(4.157)

where the dependence is on strain with respect to the ambient spacetime, the change
of topology and its gradient with respect to the Levi-Civita covariant derivative.
Covariance of (4.157) could be considered as ensured since it is a consequence of
the fact that all arguments of this Lagrangian are covariant objects. Nevertheless,
the covariance of such form of Lagrangian has to be carefully checked. This is
similar to the problem investigated on the development of conservation laws in a
unified framework by e.g. Obukhov and Puetzfeld (2014). The difference is that
we consider here the change of curvature with respect to Riemann curvature rather
than the curvature itself. Remind the following definition of the hypermomenta by
means of their constitutive laws (they are slightly different compared to the previous
definition in (4.68)):

σαβ := ∂L

∂gαβ
, Σαβγ := ∂L

∂T
γ
αβ

, Ξλαβγ := ∂L

∂∇λTγαβ
(4.158)

As for the Lagrangian depending on the metric and the contortion only, we obtain
the following theorem for derivation of fields equations.

Theorem 4.7 Let a Riemann–Cartan continuum matter (B, gαβ, Γ
γ
α ) in motion

within a Minkowski spacetime (M , ĝαβ , Γ̂
γ
α ). The Lagrangian of the continuum

is assumed to depend on the metric and on the contortion tensor and its metric
covariant derivative L (gαβ,T

γ
αβ ,∇λTγαβ). The conservation laws hold for contin-

uum matter with arbitrary contortion field and for which Lagrangian depends on
the contortion explicitly:

∇α
(
gρβσ

αβ +Σαβγ T
γ
ρβ +Ξλαβγ ∇λTγρβ

)

+ ∇β
(
gαρσ

αβ +Σαβγ Tγαρ +Ξλαβγ ∇λTγαρ
)

= σαβ
(
gαγT

γ
ρβ + gγβTγρα

)
+Σαβγ ∇ρTγαβ +Σαβρ ∇γTγαβ

+ Ξλαβγ ∇ρ∇λTγαβ +∇γ
(
Ξλαβρ ∇λTγαβ

)
−∇λ

(
Ξλαβγ ∇ρTγαβ

)
(4.159)

where hypermomenta are given by constitutive relations (4.158).
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Proof The proof is based on the same method as previously by writing first the
variational equation:

δL = σαβLξ gαβ +Σαβγ LξT
γ
αβ + Ξλαβγ Lξ∇λTγαβ

where the Lie derivatives Lξ gαβ and LξT
γ
αβ have the same form as previously. It is

easily shown that the Lie derivative of the covariant derivative takes the form of:

Lξ∇λTγαβ = ξρ∇ρ∇λTγαβ
− ∇λTραβ∇ρξγ + ∇ρTγαβ∇λξρ +∇λTγαβ∇αξρ +∇λTγαβ∇βξρ

Introducing these relations into the first variational equation allows us to obtain after
straightforward but tedious calculus the conservation laws (4.159). ��
Remark 4.44 The conservation laws (4.159) are similar to those derived in the 18th
chapter on covariant conservation law of the book (Kleinert 2008). They extend
the previous conservation laws to continuum whose Lagrangian depend not only
on metric and contortion tensors but also on the Levi-Civita covariant derivative
of the contortion tensor. The dependence on this latter argument follows from the
dependence on the curvature of the Lagrangian.

4.3.4.5 Field Equations

In some sense, Eq. (4.159) may be exploited to derive the equation of conservation
of a Riemann–Cartan U4 theory of gravitation. If assuming the Einstein–Hilbert
action for the Riemann–Cartan spacetime, the field equations have been derived
previously (4.81), where the hat is omitted since we are dealing with the matter
metric gαβ ,

{
Rαβ − (1/2) R gαβ = 0

2
(
δαμδ

λ
γ − δλμδαγ

)
∇λgμβ + ℵαγμ gμβ = 0

(4.160)

Conversely to the work of Hehl et al., the main assumption here is to start with a
vacuous Riemann–Cartan spacetime (indeed analogous to curved continuous matter
with torsion) and this explains the missing of right-hand side term in the first
equation (4.160) e.g. Hehl et al. (1974), in which the equations derived were devoted
to microscopic particles with canonical spin.

Remark 4.45 As for the Lagrangian depending only on the metric and contortion,
we observe again that some additional terms are present in the divergence operator,
σαβ becomes gρβσαβ + Σαβγ T

γ
ρβ + Ξλαβγ ∇λTγρβ e.g. Yasskin and Stoeger (1980).

Published works on gravitation with torsion stated that the torsion, and by the way
the contortion, couples to the microscopic spin but not to the rotation e.g. Hehl
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et al. (2013), Yasskin and Stoeger (1980) and this is expressed in the missing of
torsion in the conservation laws at the macroscopic level. This not in agreement
with the results of some publications e.g. Mao et al. (2007) which supports that
Gravity Probe B can be used to experimentally highlight the existence of torsion.
However, some investigations are still needed when we look at Eq. (4.159) where
we observe that the contortion explicitly appears in the conservation laws even in
the missing of hypermomentumΣαβγ . This still remains a long debate as far as we
know.

Remark 4.46 As for conservation laws developed in Obukhov and Puetzfeld (2014),
Eq. (4.159) may be used as starting point to investigate either relativistic gravitation
within Riemann framework, or Riemann–Cartan gravity in the case of compatible
connection. We rewrite conservation laws where covariant derivative is defined with
the Levi-Civita connection ∇ for practical reason: to avoid torsion tensor in the
derivative operator. Of course, we recover the particular case when the contortion
vanishes.

Conservation laws (4.151) and (4.159) involve the contortion field and its metric-
covariant derivatives on the manifold B immersed within a spacetime M , both of
them are curved with non zero torsion. We have seen that the motion of a particle
test within a non zero curved spacetime is along the autoparallels that are different
from the geodesics ones e.g. Hehl et al. (1976), Kleinert (2000), Papapetrou (1951).
But the equation of motion does not allow us to determine the skew-symmetric
part of the contortion tensor T. What should be mentioned is that the presence of
the contortion adds 24 unknowns to the continuum primal variables (ten for the
metric). At least theoretically, it is necessary to propose a “gedanken experiment”
background to measure the torsion field e.g. Hehl (1971), Garcia de Andrade (2004).
This is a main motivation to develop the model of Riemann–Cartan continuum
moving within a non zero torsion curved spacetime M . Some attempts have been
also made to suggest theory supporting the existence, and even the necessity to adopt
a Riemann–Cartan manifold to mimic the rotational flows of fluid with vorticity e.g.
Garcia de Andrade (2004, 2005), Rakotomanana (2003). The trace of the Cartan
torsion is expressed in terms of the background frequency of the flow, and the theory
supporting this suggestion is based on the gauge invariance including torsion tensor.



Chapter 5
Topics in Continuum Mechanics
and Gravitation

5.1 Introduction

Modelling spacetime and more generally an arbitrary continuum requires the
definition of the background geometry adapted for capturing all subtleties of the
medium. As for the evolution of the spacetime concept from Newtonian to Riemann
and even Riemann–Cartan manifolds, mathematical models of continuum also
has been extended independently on the speed of bodies. Namely transformation
of strain gradient continuum do not necessarily involve large speed of particles
constituting the body. Extension of non relativistic spacetime to include gravitation
was first due to Cartan to obtain Newton–Cartan gravitation. Without reference
to gravitation, the Cartan geometric background was worthily used to account for
dislocations and disclinations within otherway virgin matter. This chapter explores
some aspects of continuum mechanics and gravitation within this context, namely
in the domain of wave propagation.

Two types of waves are mostly considered and assumed to capture signals from
faraway regions (in the sense of spacetime distance) to detect the merging of black
holes, the presence of astronomic planets, and any other astrophysical phenomena.
First, electromagnetic waves, including light wave propagation, whose theory is
based on the Maxwell equations, are actually the most mastered and intensively
exploited to support for many years signal science and technology. Second, gravita-
tional waves although predicted by Einstein relativistic gravitation almost 100 years
ago, are now on the way of experimental validation. Conversely to electromagnetic
waves that are considered to be dispersed and faded with environment, gravitational
waves which are spacetime waves are thought to propagate with neither dispersion
nor fading. This concept may nevertheless evolve in the future if we work in the
framework of Einstein–Cartan curved spacetime with torsion rather staying in the
Einstein curved spacetime framework.

We consider in this chapter some applications in the domain of strain gradient
continuum, gravitational waves, and will sketch some aspects of electromagnetism

© Springer International Publishing AG, part of Springer Nature 2018
L. R. Rakotomanana, Covariance and Gauge Invariance in Continuum Physics,
Progress in Mathematical Physics 73, https://doi.org/10.1007/978-3-319-91782-5_5

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91782-5_5&domain=pdf
https://doi.org/10.1007/978-3-319-91782-5_5


178 5 Topics in Continuum Mechanics and Gravitation

in the next chapter. The link between these examples is related to the developments
of the curvature tensor, and the eventual presence of torsion in the spacetime and the
matter continuum. The derivation of the deviation equation was a starting point for
the detection of gravitational waves in physics. Introducing an affine connection
with torsion may render the derivation more complex since there is no more
geodesic but autoparallel curves in the spacetime, and the principle of equivalence
should be revised. We first in this section remind the basics of gravitational waves
within a Einstein gravitation theory. Then we derive the deviation equation for both
geodesics and autoparallels.

5.2 ContinuumMechanics in a Newton Spacetime

In this section we consider a background spacetime without gravitation, and more
generally without external applied forces. The spacetime of Newton mechanics
is thus described by a Cartesian metric gαβ := diag {0, 1, 1, 1}, a vector τα :=
(1, 0, 0, 0), and a and symmetric affine connection Γ γαβ , such that the metric is

orthogonal to the vector τα e.g. Goenner (1974). Metric compatibility of Γ γαβ and

τα, ensure the existence of a family of coordinate system such that Γ γαβ ≡ 0
(referential frames). We now investigate some types of waves in this spacetime.
The most basic of them and mostly observed in everyday life is the elastic waves as
during vibrations of beams, seismic perturbations to name but a few. In such a case,
the waves are the motion of matter within a flat spacetime endowed with the metric
ĝαβ where the space is separated from the time.

5.2.1 Classical Continuum in Newtonian Spacetime

In addition to the flat spacetime, we also consider a classical continuum character-
ized by a zero torsion and zero curvature for the continuum matter e.g. Marsden
and Hughes (1983). Accordingly, we can define a global coordinate system on the
continuum manifold B, and a metric compatible flat connection ∇̂.

5.2.1.1 Continuum Transformations and Integrability

By limiting our purpose to elastic deformation, both the torsion and the curvature
of not only the spacetime but also the continuum matter are zero in this subsection,
say the two conditions ℵr = ℵc ≡ 0 and �r = �c ≡ 0. Indeed these two conditions
are merely requirements that the metric and the connection are single-valued tensor
fields on the continuum and smooth enough to be twice differentiable e.g. Maugin
(1993), Rakotomanana (2003). For the sake of the simplicity, we choose a Cartesian
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coordinate system in an inertial Galilean reference frame. The tetrads restricted to
infinitesimal transformations and the metric tensor are given by the relationships:

F iλ = δiα + ∂λui, gλκ = δλκ + (∂λuκ + ∂κuλ) , Γ
γ
λκ = ∂λ∂κuγ

where the use of Latin and Greek indexes may be done arbitrarily without difficulties
since we are adopting a Cartesian coordinate system for both reference and current
configurations. Postulating that the metric and the connection are single-valued and
sufficiently smooth, the infinitesimal integrability conditions (Schwarz conditions)
take the form of:

{ (
∂α∂β − ∂β∂α

)
gλκ = 0(

∂α∂β − ∂β∂α
)
Γ
γ
λκ = 0

(5.1)

First, from the expression of the connection in terms of displacement field, we
observe that ℵγλκ := ∂λ∂κu

γ − ∂κ∂λuγ = 0 because the displacement mapping
is single-valued and twice differentiable. Second, from the first row of Eq. (5.1), we
deduce the vanishing of the Riemann curvature tensor. This may be also checked by
calculating the Riemann–Cartan curvature:

�γαβλ := ∂αΓ γβλ − ∂βΓ γαλ + Γ γανΓ νβλ − Γ γβνΓ ναλ
= (∂α∂β − ∂β∂α

)
∂λu

γ + second order terms

� 0

which vanishes at first order when assuming a (single-valued and) smooth displace-
ment gradient. Proof for finite transformations and nonlinear case may be found in
e.g. Rakotomanana (2003).

5.2.1.2 Constitutive Laws and Conservation Laws

The basic theoretical model for analyzing the wave propagation is derived from
the Navier equation in linear elasticity with homogeneous continuum matter. For
deriving the conservation laws, we apply the Poincaré’s invariance. We remind here
the basic steps for driving the conservation laws for a small strain elastic continuum.
The action associated to an arbitrary but admissible potential energy U takes the
form of:

S :=
∫ t1

t0

∫

B

[ρ
2
ĝij ∂tu

i∂tu
j −U

(
εij
)]
dvdt (5.2)

where the only argument of the potential energy U is the small strain tensor εij :=
(1/2)

(
∇̂iuj + ∇̂j ui

)
. The Lie derivative variation, say δ := Lξ of the action is
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easily written after integrating by parts (on time for the first row, and on space for
the second row):

δS =
[∫

B
ρξi∂tu

i dv

]t1

t0

−
∫ t1

t0

∫

B
ρξi∂ttu

i dvdt

−
∫ t1

t0

∫

B
∇̂j
(
σ ij ξi

)
dvdt +

∫ t1

t0

∫

B
ξi∇̂j σ ij dvdt

where we have defined the constitutive laws relating the stress tensor and the strain
tensor as:

σ ij := ∂U

∂εij
, and σ ij (1/2)

(
∇̂iξj + ∇̂j ξi

)
= σ ij ∇̂j ξi (5.3)

since the symmetry of the stress tensor is here obviously deduced from that of
the strain tensor. We also remind the Lie derivative variation of the strain tensor
as Lξ εij = ∇̂iξj + ∇̂j ξi . From the Haar lemma and worth choice of boundary
conditions (in time and in space), we can localize and obtain the usual conservation
laws in elasticity theory e.g. Marsden and Hughes (1983):

ρ∂ttu
i = ∇̂j σ ij (5.4)

where ∇̂ is an Euclidean flat connection (without torsion and without curvature
too) e.g. Flügge (1972). Closure of this linear momentum equation is obtained by
defining the constitutive equations relating stress and strain σ ij (εkl) or equivalently
the shape of the energy function U (εkl).

5.2.1.3 Navier Equation

We now consider elastic wave propagation within linear, isotropic, and homoge-
neous continuum. Development of the theory is ruled by the derivation of exact
linear momentum equations and by the way boundary conditions if any. The method
includes three steps: definition of the Lagrangian and namely the strain energy
potential, formulation of the linear momentum equation by accounting for the stress-
strain law. The linear elastic deformation of a continuum in the framework of non
relative small strains may be captured by the Lagrangian:

L := (ρ/2)ĝij ∂tui∂tuj −
[
(λ/2)Tr2ε + μTr

(
ε2
)]

(5.5)

in which ĝαβ denotes the metric tensor of the three dimension space, uα(t, xγ )
the displacement field of the continuum. The two constants λ and μ are the Lamé
coefficients of elasticity of the continuum and ρ the matter density. Constant μ
is the shear modulus of the material. The metric induced by the deformation of
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the continuum B may be written as gαβ � ĝαβ + 2εαβ with 2εαβ := Luĝαβ =
∇αuβ + ∇βuα . Choosing the Lagrangian (5.18), we obtain the Navier equation.
As a remind the resulting elastic wave equation in linear isotropic homogeneous
elasticity takes then the form of e.g. Rakotomanana (2009):

(λ+ μ)∇(∇ · u)+ μΔu = ρa (5.6)

where a denotes the acceleration. The nabla operator ∇ and Laplacian operator
Δ are derived by means of the Levi-Civita connection Γ

γ

αβ of the flat spacetime.

Classically, application of the divergence ∇· and rotational ∇× operators allows us
to point out the two waves included in this model. Practically, we can decompose
the displacement field into a gradient and a rotational field u := ∇Φ+∇×H, called
Helmholtz decomposition,

∇
[
(λ+ 2μ)ΔΦ − ρ ∂2

t Φ
]
+∇ ×

{
μ ΔH− ρ ∂2

t H
}
= 0

The volume and shear wave propagation equations which are sufficient conditions
of this previous equation are deduced accordingly:

{
(λ+ 2μ)ΔΦ − ρ ∂2

t Φ = 0
μ ΔH− ρ ∂2

t H = 0
�⇒

{
∂2
t Φ − c2

L ΔΦ = 0
∂2
t H− c2

T ΔH = 0
(5.7)

where two elastic waves co-exist and whose celebrities are obtained c2
L :=

(λ+ 2μ) /ρ, and c2
T := μ/ρ. Celebrities are different. A change in volume which

is a dilatational perturbation will propagate at the velocity cL whereas a distortional
wave will propagate at the velocity cT .

5.2.1.4 Four-Dimensional Formulation

Conversely to acoustic waves and electromagnetic waves in vacuum spacetime,
elastic waves include two celebrities (for isotropic continuum). A coordinate system
may then be defined as xμ := (x0 := cLt, x1, x2, x3), and the wave equations (5.7)
may be written respectively as:

ĝαβ ∇̂α∇̂βAμ = 0, Aμ :=
(

Φ,
c2
L

c2
T

H 1,
c2
L

c2
T

H 2,
c2
L

c2
T

H 3

)

(5.8)

where ĝαβ = diag {+1,−1,−1,−1} is the Minkowskian metric of the spacetime,
and Aμ a kind of four potential. It is similar to an electromagnetic potential we will
see in the next chapter. The simplest solution of the four-dimensional wave equation
(5.8) is obtained by assuming a plane wave as:



182 5 Topics in Continuum Mechanics and Gravitation

Aμ = �e
{
Âμ exp

(
iκαx

α
)}

(5.9)

where Âμ is the wave (complex) amplitude, and κα is a null four-vector such that
κα κ

α = ĝαβκακβ = κ0κ
0 − κiκi ≡ 0. The link with the three dimensional

spatial solution and temporal solution is then given by the relationships (dispersion
equation):

⎧
⎨

⎩

ω

cL
:=
√
κ0κ0 =

√
κiκi

k :=
(
κ1, κ2, κ3

) (5.10)

where ω and k are the usual frequency and the wave number vector respectively.
The longitudinal wave celerity is introduced since the time coordinate was defined
as x0 := cLt . An alternative description would be based on another definition x0 :=
cT t and the definition of the vector Aμ would be changed accordingly.

Remark 5.1 The first line of Eq. (5.10) provides the relation between the frequency
and the wave number and constitutes nothing more than the dispersion equation.
The nullity of the four-vector, sometimes also called four-frequency, κακα ≡ 0
means that κα is a lightlike vector. It should be pointed out that considering κα as a
lightlike vector gives the dispersion equation. There is a strong similarity with the
special relativity theory, and also with the electromagnetism theory.

5.2.1.5 Example of Spherical Waves

For illustrating Eq. (5.6) let us consider the radial vibration of a continuum medium
with spherical symmetry about the origin O of the space. The displacement is
assumed to be u := u(t, r) er where we use a spherical coordinate system (r, θ, ϕ),
ϕ denoting the azimuthal coordinate. The motion equation (5.6) that does not vary
with θ or ϕ reduces to a radial motion and is governed by:

(λ+ 2μ)
[
∂rru+ (2/r)∂ru− 2u/r2

]
= ρ∂ttu

Searching for solutions with the form of u(r, t) := U(r)T (t), the function U(r)
should satisfy the radial equation:

r2U ′′(r)+ 2rU(r)+
(
k2r2 − 2

)
U(r) = 0, with k2 := ρω2/(λ+ 2μ)

(5.11)

owing that the time solution takes the form of T (t) = A sin(ωt) + B cos(ωt), in
which ω is the frequency of the wave. The space part of the spherical wave equation
(5.11) is a spherical Bessel equation of order � = 1. It is worth to define a function
V (r) := U(r)√kr which allows us to obtain the equation:
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Fig. 5.1 First line (a): Volterra process for the two types of dislocations (relative displacement of
two contacting surfaces): (a1) screw dislocation; (a2) edge dislocation; and (a3) edge dislocation
which separates two surfaces; Second line (b): Volterra process of two types of disclinations
(relative rotation of two contacting surfaces): (b1) and (b2) twist disclinations, and (b3) wedge
disclination

r2V ′′(r)+ rV ′(r)+
(
k2r2 − (�+ 1/2)2

)
= 0

which is Bessel equation of order �+1/2. By accounting for the change of variable,
the solutions of the initial equation are thus (� = 1):

j�(r) =
√
π

2kr
J�+1/2(kr), n�(r) =

√
π

2kr
Y�+1/2(kr), (5.12)

which are called spherical Bessel functions of first kind and second kind respec-
tively. It is noticed that spherical Bessel functions are simpler compared to Bessel
functions. They are related to trigonometric functions as follows:

j1(r) = sin(kr)

k2r2 − cos(kr)

kr
, n1(r) = −cos(kr)

k2r2 − sin(kr)

kr
, (5.13)

The general solution holds:

U(r) = C
[

sin(kr)

k2r2 − cos(kr)

kr

]
+D

[
−cos(kr)

k2r2 − sin(kr)

kr

]
(5.14)

in which the constants C and D may be calculated by means of the boundary
conditions. For plain sphere, the finiteness value of the displacement amplitude at
the origin allows us to eliminate the second term when r → 0, then D = 0. By the
way, we notice that j1(r) � kr/3 +O(r).
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5.2.2 Continuum with Torsion in a Newtonian Spacetime

As previously, we consider a simple material model, and follows the three steps
as before in order to derive the extended linear momentum equation. Extension of
Navier equations is necessary because we deal no more with Riemann continuum
but rather a Riemann–Cartan continuum. Various theoretical approaches may be
used to classify the dislocations (line defects). We consider one of most classical of
them which is the Volterra process as sketched on Fig. 5.1. The first line of the figure
reports the translational dislocations corresponding to the relative displacement
of contacting surfaces along axial, radial, and azimuthal directions respectively.
The second line displays the relative rotations (disclinations) of two contacting
surfaces about azimuthal, radial, and axial directions respectively. The first modes of
continuous fields of dislocations and disclinations with non-Riemannian geometry
approach draw back to the fifties e.g. Bilby et al. (1955). Since then, numerous
models have been proposed e.g. Maugin (1993), Noll (1967) to name but a few. A
common feature is that the main ingredients to model continuous distributions of
line defects are the torsion and curvature fields associated to an affine connection
on a Riemann–Cartan manifold e.g. Rakotomanana (1997). Particularly, the torsion
tensor measures not only the density of dislocation within a material but is also able
to capture the continuous distribution of non smoothness of scalar field over the
manifold (Rakotomanana 2003). The torsion distribution is then of great interest if
we want to compare properties of different materials or to characterize the material
response under waves. Indeed, the use of elastic waves to determine the amount of
torsion field presents some interest. In a dislocated continuum approach, the concept
of Bürgers vector b is a common variable allowing the generation of dislocation.
Relationships between b and the torsion holds:

bγ :=
∮

C
ℵγαβ dxα ∧ dxβ

where the integration is done along a loop C surrounding a dislocation. The Bürgers
vector is not topologically invariant. This vector violates the covariance x→ x′:

bγ
′ =
∮

C
ℵγ ′
α′β ′ dx

α′ ∧ dxβ ′ =
∮

C

∂xγ
′

∂xγ
ℵγαβ dxα ∧ dxβ �=

∂xγ
′

∂xγ
bγ

Therefore, the torsion field ℵγαβ may be considered as more fundamental variable
than the vector bγ . Practically, despite its nice physical interpretation, the Bürgers
vector cannot be used as a argument of the Lagrangian L . The next example is thus
motivated by the derivation of a model for measuring torsion tensor in a continuum
matter with internal architecture undergoing small strain and small displacement.
We consider a particular continuum with torsion (B, gαβ, Γ ααβ) in motion within a

Newtonian spacetime (N , ĝαβ ≡ δαβ, τ̂α := 1, Γ̂ γαβ ≡ 0).
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5.2.2.1 Lagrangian Function

Consider the motion of a continuum matter U in a Newtonian spacetime. We
assume that the mathematical model of B is entirely described by the action, where
we have dropped any external action but the gravitation,

S = −
∫

B
LM

(
εαβ,T

γ
αβ

)
ωn −

∫

B
ρc
√
uαuαωn (5.15)

where ρ is the density (mass per unit volume), vα(t, xμ) denotes the four-vector
velocity field on B, εαβ := (1/2)

(
∂αuβ + ∂βuα

)
denotes the Cauchy strain tensor

with uα(t, xμ) the displacement field, and καβ := �λλαβ the (3D)-Ricci curvature
tensor on B. As for linearized gravitation waves, we can introduce the strain as
gαβ = ĝαβ + 2εαβ with |εαβ | << 1. When the velocity of a material point of the
continuum is relatively low vi << c, the four-velocity (2.77) reduces to:

vμ := dxμ

dτ
= 1
√

1− (v2/c2)

(
1, vi

)
�⇒ vμ �

(
1, vi

)
�
(

1,
∂ui

∂t

)

(5.16)

where ui is the displacement components of the point. Then, assuming a low
velocity situation and small perturbation for the displacement field (we neglect the
nonlinear part of the strain Tr(∇Tu∇u)), the Lagrangian reduces to the Newtonian
limit to give (α, β, γ, ν = 1, 3):

L := (ρ/2) ∂tuα∂tuα − (1/2)Eαβγ νεαβεγ ν, εαβ := (1/2)
(∇αuβ +∇βuα

)

(5.17)

where the relativistic Green-Lagrange strain (4.88) is linearized to obtain the strain
tensor in (5.17). The dependence on the contortion tensor implicitly appears in
the strain tensor since the covariant derivative involves the connection coefficients
Γ
γ
αβ = Γ γαβ + T

γ
αβ . We remark that the gravitational part of the Lagrangian (kinetic

energy) is merely given by LG := (ρ/2) ∂tuα∂tuα which is an approximation of the
dust matter inertial terms −ρc√vαvα ωn (vα stands for four-velocity vector here)
in Eq. (2.85).

5.2.2.2 Conservation Laws

Say a continuum B with non zero torsion (which may be also called first gradient
continuum, even if the kinematic variable is rather the torsion than the covariant
derivative of the strain). The continuum is evolving within a Newton space-time. A
common method is to split the Lagrangian into two parts: the kinetic energy due to
the motion within the spacetime, and the potential energy associated to matter. Let
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consider an extension of the Lagrangian (5.17) as:

L = (ρ/2) ∂0uα∂0u
α −LM

(
εαβ
)

(5.18)

The variation of the associated action leads to:

δL = ∂L

∂(∂0uα)
δ(∂0uα)+ ∂L

∂εαβ
δεαβ = ρ∂0u

αδ(∂0uα)− 1

2
σαβδ

(∇αuβ +∇βuα
)

where we remind the definition of the stress σαβ as the derivative of the matter
Lagrangian LM with respect to the stress εαβ . This variation may be written as
follows:

δL = ∂0(ρ∂0u
αδuα)− ∂0

(
ρ∂0u

α
)
δuα −∇α

(
σαβδuβ

)+ (∇ασαβ
)
δuβ

The first term and the third term may be pushed to the spacetime boundary and
included in a divergence term at the boundary. Therefore, the remaining terms hold
as the conservation laws:

∇βσβα − ∂0
(
ρ∂0u

α
) = 0 (5.19)

which resembles to the classical conservation laws for continuum mechanics e.g.
Marsden and Hughes (1983). In the material part of the Lagrangian, the strain may
be obtained by using either a Riemann–Cartan connection Γ γαβ of the continuum

(non zero torsion, and non zero curvature), or the Levi-Civita connection Γ
γ

αβ of the
Cartesian ambient space. In all cases, we worthily assume a metric compatibility
of the connection. See e.g. Sharma and Ganti (2005) for the importance of the
angular gauge-field in the definition of the strain for strain gradient elasticity. For
isotropic, and uniform density (which does not mean homogeneous matter), the
tangent stiffness holds (usual Hooke’s law) Eαβλν as constant.

5.2.2.3 Extended Navier Equation in a Riemann–Cartan Continuum

We consider a Riemann–Cartan continuum B with the Lagrangian (5.18) where the
strain tensor εαβ is calculated as the symmetrized part of ∇αuβ for material strain
or that of ∇αuβ for the so-called spatial strain. The assumed Lagrangian explicitly
depends neither on the curvature nor on the torsion. By applying the Poincaré gauge
invariance and then (5.19), we first derive the divergence of the stress tensor:

∇βσαβ = (1/2)∇β
[
E
αβμν

(∇μuν +∇νuμ
)] = E

αβμν∇β∇μuν (5.20)

owing the symmetryEαβμν = Eαβνμ and the metric compatibility of the connection.
Let us remind some properties of the torsion tensor (2.35) and the curvature (2.38)
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tensor in the framework of Riemann–Cartan geometry, for any scalar field Φ and
vector field u on the manifold B:

{
−ℵγβμ∇γ Φ = ∇β∇μΦ − ∇μ∇βΦ
�νβμγ uγ = ∇β∇μuν −∇μ∇βuν + ℵγβμ∇γ uν

(5.21)

For the sake of the simplicity, we consider the case of linear isotropic elasticity for
which the tangent tensor takes the form of:

E
αβμν := λ ĝαβĝμν + μ (ĝαμĝβν + ĝαν ĝβμ) (5.22)

Introduction of this isotropic tangent tensor (5.20) and the relation (5.21) for
commutation of covariant derivatives allows us to extend the classical Navier
equation (5.6) to take the form of Futhazar et al. (2014):

(λ+ μ)∇α∇βuβ+μ∇β∇βuα+μĝαμ
(
�μν uγ − ℵγβμ∇γ uβ

)
= ρ∂2

t u
α (5.23)

where �μν := �γγμν is the Ricci curvature which entirely defines the curvature
tensor in a three dimensional space. We observe that the Navier equation (5.19)
for defected matter includes the influence of torsion and curvature Kleman and
Friedel (2008). Some aspects of the influence of torsion and curvature on the linear
momentum conservation has been investigated in e.g. Maugin (1993) in a rather
general purpose. The form of the obtained equation suggested similarity with the
gravitation-spin theory. We will develop in the next chapter the influence of the
Riemann–Cartan geometry on other waves as electromagnetic fields. Of course
we recover the classical elastic wave equation for non curved and zero torsion
continuum. The first two terms in Eq. (5.23) are analogous to the classical Navier
equation although the connection here includes the contortion tensor. The third
term is the contribution of torsion and curvature and they are only related to
the shear modulus μ although their interaction appears for all three components
of the displacement. In the last two terms of the left hand side of the extended
Navier equation, the curvature part μgαμ�μν uγ induces an auto-oscillation of the
continuum whereas the torsion part μgαμℵγβμ∇γ uβ engenders a space fading of the
wave. An example for dislocated continuum is reported in the next paragraph.

Remark 5.2 Conversely to the classical wave propagation equation (5.6) it is
difficult to separate the dilatational wave Φ and the shear wave H since they are
highly coupled in Eq. (5.23).

5.2.2.4 Example of a ℵ1
23 �= 0

In a recent work, we considered a uniform distribution of screw dislocation
characterized by one component of the torsion ℵ0 := (1/2)ℵ1

23 �= 0, all other
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components are zero. We work in a Cartesian basis for the sake of the simplicity.
It is however stressed that the Bianchi identities for Einstein–Cartan manifolds e.g.
Rakotomanana (2003) (and reported in relation (4.74)) should be satisfied for the
model, such is the case in this example. A uniform distribution of defects is now
introduced in the conservation laws. Details of field equations deduced from the
Lagrangian (5.17) may be found in Futhazar et al. (2014). It may be observed that
the use of Riemann–Cartan was also developed for fluid flows with vortex e.g.
Garcia de Andrade (2004), Rakotomanana (2003) where the contortion tensor is
added to extend the classical wave operator in compressible fluid to account for
the rotational flow with vortex. For the strain is calculated by means of the entire
connection, the propagation equation (5.23) reduces to the conservation laws where
the divergence operator also includes the torsion of the connection ∇,

∂ttu1 = (c2
L − c2

T )∂1juj + c2
T ∂jju1+c2

T ℵ0(∂3u2 − ∂2u3)

∂ttu2 + (cT ℵ0)
2 u2 = (c2

L − c2
T )∂2juj + c2

T ∂jju2 + c2
T ℵ0(∂3u1 + 2∂1u3)

∂ttu3 + (cT ℵ0)
2 u3 = (c2

L − c2
T )∂3juj + c2

T ∂jju3 − c2
T ℵ0(∂2u1 + 2∂1u2)

(5.24)

For this model, additional body forces (configurational forces including wave
propagation, diffusion, and breathing) appear in the wave propagation equations,
they correspond to famous Peach-Koehler forces in dislocation theory. Analysis
of the solution have been investigated elsewhere (Futhazar et al. 2014), showing
drastically different behavior for this models particularly for the wave attenuation
and polarization. It is astonishing that use of strain (with torsion) allows us to
highlight a superimposed self-vibration phenomenon due to the uniform array
of dislocations (see e.g. Barra et al. (2009) for some experimental results), with
a specific frequency ω0 := √

μℵ0/ρ along the directions 2, and 3. Physical
interpretation of self-vibration of dislocations is the following: an incident wave—
coming from any other region of the solid—hits the dislocation, causing it to
oscillate in response. It induces scattering of the incident wave.

We sum up some results of previous (Futhazar et al. 2014) to highlight the
influence of the choice of the connection. Let consider plane wave solution with
gradient continuum of the form u := u0e

i(k·x−ωt) where u0 is the polarization
vector, and k := k n is the wave vector such that n = cosφ e1 + sin φ cos θ e2 +
sin φ sin θ e3 is the unit propagation director. Introduction of the plane wave
solutions allows us to determine the dispersion patterns. The dispersion equation
thus takes the form of:

P6(k) = Det
(
−k2

M+ ikD+ B+ ω2
I

)
= 0 (5.25)

with c2
l := (λ + 2μ)/ρ and c2

t := μ/ρ. The matrices M, D, and B are explicitly
given by:
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M = c2
t I+

(
c2
l − c2

t

)
n⊗ n,

D = c2
t ℵ0

⎛

⎝
0 − sinφ sin θ sin φ cos θ

sin φ sin θ 0 2 cosφ
− sin φ cos θ −2 cosφ 0

⎞

⎠,

B = −c2
t ℵ2

0

⎛

⎝
0 0 0
0 1 0
0 0 1

⎞

⎠

They represent the elastic wave, the diffusion, and the breathing modes respectively.

Remark 5.3 It is interesting to observe that, independently on the classical elastic
wave and wave diffusion, a theoretical periodic motion appears in time in addition
to space motion. Then we notice that continuum particles move rigidly and
periodically and return back to their original configuration, namely all of them move
on an ellipse.

Some illustrations of dispersion curves are given in Figs. 5.2 and 5.3, for two
different directions for illustrating the anisotropy of wave propagation. Disper-
sion equation (cubic polynomial functions of k2 with real constants) shows one
quasi-longitudinal wave and two quasi-transversal waves. For the two particular
polarization directions φ = 0 and φ = π/6, the imaginary part of the wavenumber
vanish meaning a non attenuation of the wave. For other directions, there is
attenuation. For illustrating, real parts of wavenumbers calculated with the material
strain are displayed in Fig. 5.3 for two directions of propagation φ.

It was by the way shown that the material strain (use of ∇) involves the
disclination effects through the Ricci tensor’s contribution. In view of this simple
application, spatial strain and material strain models have different behavior.
However, it seems worth to include contortion in strain (see e.g. Sharma and Ganti
(2005) for strain gradient continuum), that allows one to capture a known physical
self-vibration of dislocations. This also conforms to the idea that strain is physically
due to relative motion of matter but not a relative movement of corresponding
portion of space (remind that displacement may be multivalued in microfractured
media).

Remark 5.4 The example of elastic continuum following the Hooke’s law involves
more terms than usual model of elasticity since the strain tensor itself includes
additional contribution which very interestingly looks like general relativistic effect,
see Maugin (1978) and references herein for detail. This again highlights the
analogy between relativistic gravitation and dislocations/disclinations theory e.g.
Baldacci et al. (1979), Malyshev (2000) (in this reference, Malyshev showed
that the Einstein–Hilbert Lagrangian LEH is suitable for capturing the Volterra
dislocations). The additional terms for strain may be used for an initially (non
holonomic) strained continuum.
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Fig. 5.2 Dispersion curves �e(k(ω)) with spatial strain for a propagation direction φ = 0, π/6.
Roots are labeled arbitrarily ki , i = 1, 2, 3. Dotted lines are the dispersion curves in a perfect
medium: kl = ω/cl and kt = ω/ct . Simulation is performed for ℵ0 = 1 m−1 and typical steel
values: ρ0 = 7500 kg m−3, Young modulus E = 210 GPa and Poisson ratio ν = 1/3

In practise, care should thus be done for physical interpretation and operating
usage of experimental wave attenuation results during wave non-destructive testing
e.g. Barra et al. (2009), where its was shown that it is experimentally possible to
measure dislocation density within aluminium. In the general framework of three-
dimensional continuum mechanics, the linearized version of this elastic model holds
with:

L := −ρc√uαuα − (1/2)Eαβλμεαβελμ, εαβ � (1/2)
(∇αuβ +∇βuα

)
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Fig. 5.3 Dispersion curves
�e(k(ω)) with material strain
at φ = 0, π/6. The vertical
line localizes " . Simulation
is performed for ℵ0 = 1 m−1

and typical steel values:
ρ0 = 7500 kg m−3, Young
modulus E = 210 GPa and
Poisson ratio ν = 1/3

where connection includes the contortion tensorΓ γαβ = Γ γαβ+Dγαβ+Ωγαβ . Again we

have uα := ĝαβuβ . Using the result on the tele parallel gravity, we recall that R =
R+ T +∇α(gβλ Tαλβ)−∇β(gβλ Tαλα) where R with T := gβλ(TαμβTμλα − TαμαT

μ
λβ)

is the quadratic torsion utilized in the tele parallel gravity e.g. Sotiriou et al. (2011).
Similar developments were conducted by Malyshev (2000) to demonstrate that the
use of gauge theory allows us to describe both screw and edge dislocations in the
framework of linear elasticity. And more generally, he showed that an appropriate
Lagrangian function on a Riemann–Cartan manifold enabled to model continuous
matter with defects. For that purpose, the equivalence between Einstein–Hilbert
density and the quadratic torsion is worthily used. Transferring divergence terms
at boundaries, and assuming that R ≡ 0 (the continuum is assumed to evolve in
an Galilean spacetime), the equation shows that the curvature, via the contortion
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tensor, acts as an external source of force, whereas the torsion acts within not
only the derivation of stress but also for the calculus of the strain within matter
σαβ

[∇μuν,Tγμν
]
. By the way, a more complete model would include the evolution

laws of the contortion tensor Ṫγαβ(T
ν
μκ,∇μuν, · · · ) which are variables independent

of displacement fields e.g. Rakotomanana (1997).

5.2.3 Curved Continuum in a Newtonian Spacetime

Let consider a second gradient continuum B with a Lagrangian depending on
metric and its partial derivatives L (gαβ, ∂λgαβ, ∂μ∂λgαβ) (geometric background
is a torsionless Riemannian manifold) in motion within a Newtonian spacetime.

We work with a Cartesian coordinate system. The covariance theorem implies
that the Lagrangian should depend only on the metric (and by the way on the strain),
and on the curvature to fulfill the passive diffeomorphism invariance L (εαβ,�αβ)
where �αβ := �λλαβ + Kλλαβ defines the change of the Ricci curvature tensor on
B. As we can see, the Ricci curvature evolution during transformation includes
two parts: the variation of the curvature due to metric and then the symbols of
Christoffel, and the variation of the curvature due to the change of the contortion
tensor. For short, we notice the change of metric the “macroscopic deformation”
and the change of contortion the “mesoscopic deformation”. Accordingly, at least
two extreme situations may occur for characterizing the curvature�αβ . The general
case would be in between, nevertheless for the sake of the clarity, we shortly analyze
the two extreme cases.

5.2.3.1 Holonomic and Nonholonomic Transformations

The first extreme situation is to consider the “macroscopic” deformation to be
holonomic and by the way the metric gαβ is smooth then the corresponding cur-
vature �, assumed to be zero initially, remains unchanged during the macroscopic
deformation. The non holonomic part of the deformation is then only captured by the
curvature καβ �= 0 which may be deduced entirely and conceptually after Eq. (4.99)
by means of the contortion tensor and its first covariant derivative (by using of Levi-
Civita connection which remains unchanged during the deformation). The Ricci
curvature καβ is neither symmetric nor skew-symmetric in a general case, then it is
common to introduce a 1-form θα, α = 0, 1, 2, 3 such that καβ := ∇βθα which is
analogous to the electromagnetic potentialAα . θα and uα are actually the unknown.1

The Lagrangian of the continuum takes the form of: LM = LM

(
εαβ, θα, καβ

)

where the contortion does not explicitly appear as the unknown variable. For

1From the physics point of view on dimension, θα measured an angle [rad] and καβ behaves like
an inverse of a curvature radius [m−1].
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constitutive laws, the Lagrangian of the continuum and the spacetime holds:

L := (ρ/2)∂tuα∂tuα + (ρ/2)Iαβ∂t θα∂tθβ −LM

(
εαβ, θα, καβ

)
(5.26)

where the unknowns are the displacement uα and the potential θα. The tensor
Iαβ is to be defined. See Appendix A.4 for an engineering example of (5.26)
for Timoshenko beam in structural mechanics. First, application of Lagrangian
variationΔ allows us to deduce the covariant constitutive laws as:

σαβ := ∂LM

∂εαβ
, Ξαβ := ∂LM

∂καβ
, Λα := ∂LM

∂θα
. (5.27)

where the symmetric tensor σαβ defines the reaction of the continuum to the
macroscopic deformation as for classical continuum mechanics e.g. Marsden and
Hughes (1983).

Remark 5.5 Constitutive equations (5.27) are usually obtained from the conserva-
tion of energy of an infinitesimal portion of the continuum body B by analogy to
the usual case of hyperelasticity e.g. Marsden and Hughes (1983). σαβ is symmetric
whereas Ξαβ may be not.

Second, application of Lie-derivative variation Lδu,δθ gives the conservation laws:

δS =
∫ t2

t1

∫

B
ρ
[
∂t
(
∂tuαδu

α
)− δuα∂ttuα

+ Iαβ

(
∂t
(
∂tθ

αδθβ
)− δθβ∂ttθα

)]
dt ∧ ωB

−
∫ t2

t1

∫

B

[
σαβ∇βδuα +

(
Λα −∇βΞαβ

)
δθα
]
dt ∧ ωB + B.C. terms

in which we may introduce the constitutive laws (5.27). It is worth to define ωB as a
three dimensional volume-form of the continuum body B since space is decoupled
from the time-form dt in a Newtonian spacetime. Assuming kinematic compatibility
of the variations at the boundary ∂B, and thanks to the gauge invariance of
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Fig. 5.4 Timoshenko beam. The initial configuration of the beam is defined by the straight line
(G0,E3) with the triad (E1,E2,E3) at each point G0. The deformed configuration is defined
by the curve {G} the set of material points initially at positions G0, and the deformed triad
(d1,d2,d3) such that di := Q (di ). The displacement is defined by uG := G0G and triad rotation
by Q(θ1, θ2, θ3) where θi are parameters of the rotation tensor

the action, we deduce the local conservation laws due to the arbitrariness of the
variations (boundary terms on ∂M are dropped for convenience):

{
∂t
(
ρ∂tu

α
) = ∇βσαβ

∂t
(
ρIαβ ∂tθβ

) = Λα −∇βΞαβ (5.28)

where we have considered the Lie derivative δεαβ = (1/2)(∇αδuβ + ∇βδuα),
and δκαβ = (1/2)(∇αδθβ + ∇βδθα). The first row expresses of the system (5.28)
the analogous of linear momentum conservation whereas the second row one
the angular momentum equation. Remind the dependence of the constitutive dual
variables σαβ(ελμ, θλ, κλμ), Ξαβ(ελμ, θλ, κλμ), and Λα(ελμ, θλ, κλμ). Causality
in the sense of Einstein is ensured for this conservation laws (5.28) because the
derivative orders are the same for space and time. Both of them have second-order
derivatives (Fig. 5.4).

5.2.3.2 Example of Curved Continuum: Mindlin-Reissner Elastic Plate

A particular example of two-dimensional continuum (5.26) is the Mindlin-Reissner
plate model initially in the plane Ox1x2. This two-dimensional continuum B is in
motion within a three dimensional space M . During its transformation, this 2D-
continuum undergoes a change of curvature initially set to zero. For completeness,
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the displacement field in B is submitted to the Navier constraint (a transversal plane
section remains plane in the course of time):

⎧
⎨

⎩

u1(x
1, x2, x3) = u1(x

1, x2)+ x3 θ1(x
1, x2)

u2(x
1, x2, x3) = u2(x

1, x2)+ x3 θ2(x
1, x2)

u3(x
1, x2, x3) = w(x1, x2)

(5.29)

where uα, α = 1, 2 is the in-plane displacement field and w is the out-of-plane
displacement field one. The angles θα, α = 1, 2 denote the rotation of transversal
section. The resulting strain tensor allows us to define three strain variables e.g.
Flügge (1972):

⎧
⎨

⎩

εαβ := (1/2)
(∇αuβ + ∇βuα

)

καβ := (1/2)
(∇αθβ +∇βθα

)

γα := θα +∇αw
(5.30)

denoted in-plane strain, curvature strain, and transversal shear strain respectively.
By means of these arguments, the Lagrangian function of this continuum model is
defined as follows:

L := (ρ/2)∂tuα∂tuα + (ρ/2)∂tw∂tw + (ρ/2)Iαβ∂t θα∂t θβ −LM

(
εαβ, καβ, γα

)

where the continuum matter contribution to the Lagrangian holds, for instance,

LM

(
εαβ, καβ

) := 1

2

(
E
αβλμεαβελμ +K

αβλμκαβκλμ + C
αβγαγβ

)
(5.31)

where the potential θα denotes the angle of rotation of a cross section, in addition
to the slope due to the gradient of the displacement uα . Such a model is called
Mindlin-Reissner thin shell model. The elastic stiffness Eαβλμ, Kαβλμ, and Cαβ are
material properties. Due to the fact that this two dimensional model evolves within
a three dimensional space, the conservation laws (5.28) can be derived to include
this three dimension effects since we have introduced the out-of-plane displacement
field e.g. Rakotomanana (2009). Now, let us apply the variational procedure by
means of Poincaré’s invariance with the Lie derivative variations Lδuεαβ , Lδθκαβ ,
and Lδθ,δwγα. By worthily choosing the boundary conditions at ∂B, the local
conservations laws are deduced as:

⎧
⎨

⎩

∇βNαβ = ρ ∂ttuα
∇βMαβ −Qα = ρ I

αβ∂tt θβ

∇βQα = ρ ∂ttw
(5.32)

in which we have defined the hypermomentum as usually:

Nαβ := ∂LM

∂εαβ
, Mαβ := ∂LM

∂καβ
, Qα := ∂LM

∂γα
(5.33)

called in-plane tension, bending moment, and shear transversal force respectively.
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Remark 5.6 The Mindlin-Reissner plate model is a typical second strain continuum
model when it is considered as a 2D-continuum. This point is essential because,
if the Mindlin-Reissner plate is considered as a 3D-continuum, it could not be
considered as a strain gradient continuum.

As an illustration, let us consider a Mindlin-Reissner plate with the spacetime
coordinates xμ := (t, r, θ, z) (cylindrical coordinates for the space) associated
with the local vector base (er , eθ , ez) (orthonormal). The conservation laws (5.32)
take the explicit form for the linear momentum equation along the radial and the
azimuthal directions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Nrr

∂r
+ 1

r

∂Nrθ

∂θ
+ 1

r
(Nrr −Nθθ ) = ρ ∂

2ur

∂t2

∂Nθr

∂r
+ 1

r

∂Nθθ

∂θ
+ 1

r
(Nθr + Nrθ ) = ρ ∂

2uθ

∂t2

The second row of (5.32) gives the angular momentum equation:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Mrr

∂r
+ 1

r

∂Mrθ

∂θ
+ 1

r
(Mrr −Mθθ)−Qr = ρ h

3

12

∂2θr

∂t2

∂Mθr

∂r
+ 1

r

∂Mθθ

∂θ
+ 1

r
(Mθr +Mrθ)−Qθ = ρ h

3

12

∂2θθ

∂t2

where h is the thickness of the plate. The last row of (5.32) expresses the linear
momentum equation alongOz:

∂Qr

∂r
+ 1

r

(
∂Qθ

∂θ
+Qr

)
= ρ ∂

2w

∂t2

For the particular case of homogeneous, isotropic, and linear elastic continuum, the
constitutive laws take the form of (σ ij = Eijklεkl):

⎧
⎨

⎩

N11 = Dt (ε11 + ν ε22)

N22 = Dt (ν ε11 + ε22)

N12 = Dt (1− ν) ε12

,

⎧
⎨

⎩

M11 = D (κ11 + νκ22)

M22 = D (ν κ11 + κ22)

M12 = D (1− ν) κ12

,

{
Q1 = kFGh γ1

Q2 = kFGh γ2

where: Dt := Eh, and D := Eh3/12 are the membrane stiffness and the bending
stiffness of the plate. The material parameters E, G, and ν are the Young’s modulus,
the shear modulus and the Poisson’s ratio of the elastic material respectively. kF =
5/6 a specific coefficient to account for the non-uniformity of the shear stress on a
transverse section of the plate. For illustration, let consider a wave within the plate
with the condition uα ≡ 0, α = 1, 2 (the case uα �= 0, α = 1, 2 corresponds to the
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classic membrane wave and is independent of the rest of Eq. (5.32)). Searching for
monochromatic wave of the type:

w (x, t) = exp [j (k · x+ ωt)] , θ (x, t) = exp [j (k · x+ ωt)]

we arrive to the dispersion equation of the Mindlin-Reissner (thick) plate model:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
ρhω2 − kFGh|k|2

)
{

ρ
h3

12
ω2 −

[
kFGh+D

(
k2

1 +
1− ν

2
k2

2

)]}

+ (kFGh)2 k2
1 = 0

ρ
h3

12
ω2 − D

2
(1− ν) ‖k‖2 − kF Gh = 0

(5.34)

Remark 5.7 It is worth to notice that for wavenumber (m = 0, n = 0), the funda-
mental frequency does not vanish according to the send row of the system (5.34):

ωc00 = 1

h

√

12kF
G

ρ
, ωc00 h �

√
10 cT , c2

T :=
G

ρ

where cT denotes the shear wave celerity. ωc00 is a cut-off frequency.

5.2.3.3 Example of Gradient Continuum: Timoshenko Beam

Let consider a one-dimensional continuum B with assumed shape of displacement
(rigidity of the section). The continuum B evolves within a three dimension
space endowed with an Euclidean metric. A Cartesian coordinate system (x0 :=
t, , x1, x2, x3) is used to derive the Lagrangian and the conservation laws. The
Timoshenko beam model takes into account shear deformation and rotational inertia
effects. We only consider infinitesimal displacements and infinitesimal rotations for
the sake of the simplicity. Such a model is suitable for describing the behavior of
short beams, and for dynamics the situation of beams subject to high-frequency
excitation when the wavelength approaches the thickness of the beam. Details of
the model could be found in e.g. Rakotomanana (2009). This Cosserat-Timoshenko
beam model is one of the most known example of strain gradient continuum. For
beam undergoing small deformation, for either strain and rotation, where rotation of
section is projected onto the base as θ := θi Ei , the Lagrangian scalar holds, where
Φ := {uG1, uG2, uG3, θ1, θ2, θ3}:

L = (ρ/2)
[
(∂0uG1)

2 + (∂0uG2)
2 + (∂0uG3)

2
]
dx0 ∧ dx3

+ (ρ/2A)
[
I1 (∂0θ1)

2 + I2 (∂0θ2)
2 + J (∂0θ3)

2
]
dx0 ∧ dx3



198 5 Topics in Continuum Mechanics and Gravitation

− (1/2)
[
k1GA(∂3uG1 − θ2)2 + k2GA(∂3uG2 + θ1)2 + EA(∂3uG3)

2
]
dx0 ∧ dx3

− (1/2)
[
EI1 (∂3θ1)

2 + EI2 (∂3θ2)
2 +GJ (∂3θ3)

2
]
dx0 ∧ dx3

where the transversal displacement uG (S, t) of the mean fiber, and the section
rotation θ (S, t) are the primal variables (dependent variables). ρ and A are linear
density and section area of the beam. They are projected onto the local base of
the mean fiber (E1,E2,E3), at each point x3. Direction E3 is along the beam; Iα
is inertia moment of the beam section about Eα and J, and its polar inertia about
the direction E3 at the geometric center of the section. E and G are respectively
the shear modulus, and the Young’s modulus. Coefficients kα are correction factors
due to the uniformity of shear stress along the direction Eα in a section. We have
assumed that the vectors (E1,E2) are along the principal directions. Application
of the variational principle allows us to derive δ

∫ t2
t1
L dx0 = 0 to obtain the local

equations for linear momentum conservation:

∂3 [k1GA (∂3uG1 − θ2)] = ρ ∂2
00uG1

∂3 [k2GA (∂3uG2 + θ1)] = ρ ∂2
00uG2

∂3 (EA ∂3uG3) = ρ ∂2
00uG3

and for angular momentum conservation:

∂3 (EI1 ∂3θ1)− k2GA (∂3uG2 + θ1) = (ρ/A) I1∂
2
00θ1

∂3 (EI2 ∂3θ2)+ k1GA (∂3uG1 − θ2) = (ρ/A) I2∂
2
00θ2

∂3 (GJ ∂3θ3) = (ρ/A) I3∂
2
00θ3

where the directions of derivation are along δuGi , and δθi . It is worth to mention
that the model of Timoshenko beam belongs to the class of Cosserat medium, and
accordingly is implicitly a particular strain gradient continuum e.g. Bideau et al.
(2011). This is a particular illustration of Cosserat (strain gradient) continuum,
with practical application in engineering design. The curvature κij := ∂iθj has a
dimension of gradient of strain [m−1].
Remark 5.8 The design of the continuum matter Lagrangian is analogous to the
strain energy density of the gradient elastic continuum e.g. Askes and Aifantis
(2011). The quadratic energy density proposed by Mindlin in e.g. Mindlin (1964,
1965) includes macroscopic displacement, macroscopic strain (the same as metric),
the microscopic deformation, relative deformation (difference between macroscopic
strain and microscopic deformation), and gradient of microscopic deformation. The
isotropic case involves 903 independent coefficients. At least from the dimensional
point of view, the model (5.27) is analogous since our mesoscopic variable κλμ is
first derivatives of angle (called microscopic variables in the review (Askes and
Aifantis 2011), or in the original references Mindlin 1964, 1965) are curvature
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components then derivatives of angles and then may be considered as second
gradient of the displacement. The difference comes from the fact that we add the
angle θμ as additional variable rather that the gradient of the metric. This approach
is quite usual in structural mechanics as for Timoshenko beams or Mindlin-Reissner
plates and shells e.g. Rakotomanana (2009). This helps for ensure causality of
models and avoids higher spatial order derivatives compared to time derivatives.

For illustration, let consider the transversal vibration of a Timoshenko bean in a
plane where the displacement reduces to uG = uG1e1 and the rotation of the section
to θ = θ2e2. Then the conservation laws include two equations:

{
∂3 [k1GA (∂3uG1 − θ2)] = ρ ∂2

00uG1

∂3 (EI2 ∂3θ2)+ k1GA (∂3uG1 − θ2) = (ρ/A) I2∂
2
00θ2

(5.35)

Searching for monochromatic waves of the form uG1 := U0 exp i (ωt + kx) and
θ2 := Θ0 exp i (ωt + kx) allows us to obtain the dispersion equation in a matrix
form:

(
ρ ω2 − kFGA k2 −ikFGA k

ikFGA k ρ I

A
ω2 − EI k2 − kFGA

)(
U0

Θ0

)
=
(

0
0

)
(5.36)

Non zero solutions exist if and only if the determinant of the system is equal to zero.
We deduce the dispersion equation of the Timoshenko beam (gradient continuum):

EI

ρ
k4 −

(
I

A
+ EI

kFGA

)
ω2 k2 − ω2 + ρI

kFGA2 ω
4 = 0 (5.37)

As for Mindlin-Reissner plate model, a cut-off frequency also exists for Timoshenko
beam. A swift analysis shows that this cut-off frequency is calculated as, accounting
for both the material property and the shape of the beam section,

ω2 = ω2
c :=

kFGA
2

ρ I
(5.38)

It may be formulated as follows:

ω2
c = kF

A

I

GA

ρ
= kF

$2 c
2
T

in which $ := √
I/A et c2

T := G/ρ are the gyration radius of the section and
the square of the shear wave celerity (three dimensional continuum). An associated
wave number may be defined as k2

c := kF /$
2. For example, for steel cT �

3160 [m/s]. For a rectangular shape section with b and heighth, we have I = bh3/12
et $2 = h2/12. Owing that kF � 5/6, we find ω2

c = 10 c2
T /h

2:

h = 1 [cm] , fc := ωc/2π � 159,040 [Hz]
h = 1 [mm] , fc := ωc/2π � 1,590,400 [Hz]
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assessing that the gyration radius $ of the section plays a keyrole to highlight if
waves are of below (low) or beyond (high) the cut-off frequency.

5.2.4 Causal Model of Curved Continuum

The goal of this subsection is to discuss about the various possibilities to define
causal models of curved continuum evolving within a Newton–Cartan spacetime.
For that purpose, let consider a model of continuum with a Lagrangian function
depending on the metric, and the curvature LM(ĝαβ , �̂γαβμ, gαβ,�γαβμ), where the
spacetime metric is necessary argument to ensure a minimal coupling e.g. Anderson
(1981), and where the spacetime curvature may be introduced in the presence of
gravitation.

5.2.4.1 Inertial Terms Within a Newton–Cartan Spacetime

The Lagrangian function for the spacetime may be written as LG(ĝαβ, �̂γαβμ).
For the sake of simplicity, we first focus on the curvature terms to investigate the
inertial terms. The continuum evolves within a Newton–Cartan spacetime meaning
a classical spacetime with gravitation. For simplifying the notation we skip the hat
of the curvature hereafter.

Next step would be the derivation of variational form in the framework of
Newton–Cartan spacetime to verify if an additional inertial (rotational) term as in
e.g. Mindlin (1965), Polyzos and Fotiadis (2012) (review of lattice approach by
means of Taylor expansion and continuum approach is given in this later reference)
may be recovered in a geometric way. Adding higher (rotational) inertia term in
the kinetic energy term is a well-known method to include higher derivatives with
respect to time and space as in e.g. Bideau et al. (2011) for Timoshenko beam, and
in e.g. Polizzotto (2012) for gradient elastic material models. Let go back to the
four-dimensional spacetime and have a look at the curvature field καβ where the
Greek indices range from 0 to 3. Say the component

κ00 = δλμ
(
∂0∂λεμ0 − ∂0∂0εμλ + ∂μ∂0ε0λ − ∂μ∂λε00

)

= −∂0∂0(ε00 − δij εij )− ∂0∂0ε00 + δij ∂i∂j ε00

= −∂t∂t (ε00 − divu)− (∂t∂t ε00 −Δε00)︸ ︷︷ ︸
gravitational waves

if we assume that components ε0i, i = 1, 2, 3 vanish. This corresponds to the
transverse-traceless small perturbation in general relativity and propagation of
gravitational waves. The term divu correspond to a three dimensional spatial
divergence. For systematic search for Lagrangian arguments, let report all the
components of the curvature fields. In the following Greek indices ranges from 0
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to 3, whereas Latin indices from 1 to 3. From the definition of the curvature tensor,
we obtain the linearized curvature as follows (in a Cartesian coordinate system):

�γαβμ := ĝγ σ
(
∂μ∂αεσβ − ∂μ∂βεσα + ∂σ ∂βεμα − ∂σ ∂αεμβ

)+ O (ε) (5.39)

where the inverse of the metric takes the form of: ĝασ= diag{1,−c−2
� ,−c−2

� ,−c−2
� },

where the introduction of the parameter c� is related to the physical requirement
(for instance c� := √

E/ρ for elastic material) that any signal (wave) within the
continuum matter cannot propagate with an infinite celerity (as for the special
relativity) e.g. Baldacci et al. (1979). This is a basic assumption for propagation
of wave within a gradient material. Let calculate the components (j = 1, 2, 3):

�0
αβμ =

(
∂μ∂αε0β − ∂μ∂βε0α + ∂0∂βεμα − ∂0∂αεμβ

)

�jαβμ = −(1/c2
�)
(
∂μ∂αεjβ − ∂μ∂βεjα + ∂j ∂βεμα − ∂j ∂αεμβ

)

Say for μ = 0 or for α = 0:

�0
αβ0 =

(
∂0∂αε0β − ∂0∂βε0α + ∂0∂βε0α − ∂0∂αε0β

) = 0

�0
0βμ =

(
∂μ∂0ε0β − ∂μ∂βε00 + ∂0∂βεμ0 − ∂0∂0εμβ

)

This last component is symmetric with respect to the indices β, and μ. For the other
components we have (i �= 0, l �= 0):

�0
αβl =

(
∂l∂αε0β − ∂l∂βε0α + ∂0∂βεlα − ∂0∂αεlβ

)

�0
iβμ =

(
∂μ∂iε0β − ∂μ∂βε0i + ∂0∂βεμi − ∂0∂αεμi

)

We again calculate the components for γ = k:

�kαβ0 = −(1/c2
�)
(
∂0∂αεkβ − ∂0∂βεkα + ∂k∂βε0α − ∂k∂αε0β

)

�kαβl = −(1/c2
�)
(
∂l∂αεkβ − ∂l∂βεkα + ∂k∂βεlα − ∂k∂αεlβ

)

For mixed spacetime components we have (γ = k):

�kiβ0 = −(1/c2
�)
(
∂0∂iεkβ − ∂0∂βεki + ∂k∂βε0i − ∂k∂iε0β

)

�kiβl = −(1/c2
�)
(
∂l∂iεkβ − ∂l∂βεki + ∂k∂βεli − ∂k∂iεlβ

)

For mixed spacetime components we have (α = 0, and γ = k):

�k0β0 = −(1/c2
�)
(
∂0∂0εkβ − ∂0∂βεk0 + ∂k∂βε00 − ∂k∂0ε0β

)

�k0βl = −(1/c2
�)
(
∂l∂0εkβ − ∂l∂βεk0 + ∂k∂βεl0 − ∂k∂0εlβ

)
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For “pure” spatial components, this gives:

�kij0 = −(1/c2
�)
(
∂0∂iεkj − ∂0∂j εki + ∂k∂j ε0i − ∂k∂iε0j

)

�kij l = −(1/c2
�)
(
∂l∂iεkj − ∂l∂j εki + ∂k∂j εli − ∂k∂iεlj

)

For these curvature components, differentiation ∂0 := (c�)
−1∂t since x0 := c�t .

These results suggest that the time derivative and the gradient of strain have
influence on the spacetime curvature of the gradient continuum. The “pure” spatial
components show that the Lagrangian depend on the second strain derivative. It
is observed that the order of time and space derivatives are the same, which may
guarantee the causality of the model e.g. Metrikine (2006), Polyzos and Fotiadis
(2012). It is nevertheless easier for tractation if we utilize the Riemann curvature
instead of Riemann–Cartan one �ναβμ := gνγ �γαβμ. This permits to eliminate the
scale c� to obtain directly the linearized components of the Riemann curvature:

�ναβμ = ∂μ∂αενβ − ∂μ∂βενα + ∂ν∂βεμα − ∂ν∂αεμβ (5.40)

Remark 5.9 For the sake of the completeness, the previous development suggests
that the Lagrangian should include mixed temporal and spatial derivatives of the
displacement as arguments. This is clearly stated by the presence of curvature
components where the derivatives ∂0 and ∂k are present in most of terms.

5.2.4.2 Curved Continuum and Relativistic Gravitation

Inspiring from the free fall in general relativity, it is worth to define the local coor-
dinates of the observer’s proper reference frame according to Fermi coordinates. Ni
and Zimmermann extended this concept to expand the metric to obtain second-order
terms of the metric e.g. Ni and Zimmermann (1978). This method may be used here
to obtain the Taylor expansion about the normal coordinates. The idea is to build
a frame such that a “point particle” is free-falling along the geodesics using Fermi
normal coordinates. Let consider a particle with spatial origin at xi = 0 and a time
coordinate equal to the proper time x0 = τ = ct . Consider a local (inertial) frame
attached to this point. The line element corresponding to flat Minkowskian metric
holds: ds2 := (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2. The second-order expansion
relative to distance with respect to the origin writes:

ds2 := (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 + O
(
‖x‖2/R2

)

where R is the curvature radius R−2 := ‖�ναβμ‖. The lightcone structure of the
special relativity theory is till kept in general relativity. However, the orientation
of the lightcone and its open angle can vary across the spacetime, as sketched on
Fig. 5.5. On this figure, the light cone is different at each point but the light speed c
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Fig. 5.5 At each point of the
continuum matter or
spacetime, local Minkowski
spacetime is attached (here
points are represented by its
neighborhood xμ, yμ, and
zμ)

remains the same at each point. See Eq. (5.41) for the metric Taylor expansion. In
other words, at various positions in the gravitational field, clocks do not flow with
the same speed: some run faster, and others run slower that their neighborhood. This
is so the case within a continuum immersed under gravitation: there is no unique
time pertinent for the whole spacetime. Ni and Zimmermann explicitly obtained the
following Taylor expansion (with our convention for the indices of the curvature)
(Ni and Zimmermann 1978):

ds2 =
(

1−�ji00 x
ixj
)
(dx0)2

+ (4/3) �i0jk xjxk dx0dxi −
[
δij − (�kij l/3) xkxl

]
dxidxj (5.41)

Three points should be pointed out in this line element. The first one is the additional
presence of the component �ji00 x

ixj in the “time” part of the line. In terms of
strain this gives from Eq. (5.40):

�ji00 = ∂0∂iεj0 − ∂0∂0εji + ∂j ∂0ε0i − ∂j ∂iε00

in which the mixed space and time derivatives appear together with second
derivatives with respect to time of the strain and the Hessian of the potential ε00.
This clearly shows that the kinetic energy should include these terms in dynamics.
The second point is the presence of the spatial components of the curvature e.g. Ni
and Zimmermann (1978):

�kij l = ∂l∂iεkj − ∂l∂j εki + ∂k∂j εli − ∂k∂iεlj (5.42)
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leading the second strain gradient continuum models. Finally the last and most
interesting point is the coupling between space and matter due to the terms:

�i0jk = ∂k∂0εij − ∂k∂j εi0 + ∂i∂j εk0 − ∂i∂0εkj (5.43)

explicitly showing a dependence of the Lagrangian with respect to the first
derivatives of the strain with respect to spatial coordinates but also in presence of
time derivatives. The second-order expansion of the metric was mainly used in the
framework of linearized gravitation and gravitational waves detection, but may be
worthily exploited to give a strong mathematical background for the strain gradient
continuum model. This description is correct as long as the we can disregard the
“correction ‖x‖2/R2”. For non zero curvature any vector field on the continuum
manifold has distributed discontinuity of vector fields e.g. Rakotomanana (1997).

5.2.4.3 Examples of Strain Gradient Continuum

For modelling strain gradient continuum, the problem of inertial terms conceptually
remains a problem. For instance, the Timoshenko beam model (which is implicitly a
strain gradient continuum) includes the rotational inertial terms (e.g. Rakotomanana
2009) to ensure a causal beam model. For three-dimensional continua, adding
quadratic terms in gradient velocity was already formulated by Mindlin in 1964
for his model of high gradient continuum (Mindlin 1964). The Lagrangian function
takes the form of e.g. Polizzotto (2013a,b):

L := (1/2)ρv · v+ (1/2)ρ�2
G∇v : ∇v︸ ︷︷ ︸

kinet ic energy

− (1/2)ε : E : ε − (1/2)�2
M∇ε : E : ∇ε︸ ︷︷ ︸

potential energy

where ρ is the density, �G and �M two internal length scale parameters (gravity
and matter), and E the usual moduli tensor of elasticity. Firstly, it may observed
that the gradient of velocity includes two distinct parts ∇v = Ω+D whereΩ is the
uniquely defined skew symmetric part whereas D is the symmetric strain rate tensor.
It should be stressed that in an Euclidean space, and for small strain assumption, the
component of the strain rate tensor reduce to ∂0εij . The second term of the kinetic
energy includes a kind of inertia of rotation as Krot := (1/2) ρ�2

G ω · ω, where
ω is the axial rotation vector isomorph to the skew-symmetric tensor Ω (only for
three-dimensional space).

The connection utilized in these theories was the Levi-Civita connection e.g.
Polizzotto (2012), which may present some drawbacks when considering the
covariance of the model e.g. Antonio and Rakotomanana (2011). Indeed, the
covariant derivative of the metric vanishes due to metric compatibility. In view of
the covariance requirement of the Lagrangian function, it seems more rigorous to
a priori consider a curved connection with torsion ∇ := ∇ + K. Indeed, the strain
gradient ∇γ εαβ in the last term of the Lagrangian would be replaced by the torsion
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tensor ℵγαβ which expresses the covariant argument of the Lagrangian. In such a
case, there is no need to explicitly introduce a matter scale length �M . Similarly,
an open question would be the replacement of the velocity gradient by the time
derivative of the torsion for the kinetic energy.

In a series of papers, Polizzotto assumes that the kinetic energy is rather
function of the velocity, gradient of velocity, and the second gradient of the velocity
T (v,∇v,∇∇v), whereas the potential energy admits as argument the strain and the
first and second gradients of the strain U (ε,∇ε,∇∇ε) (Polizzotto 2013a,b):

L := T (v,∇v,∇∇v)−U (ε,∇ε,∇∇ε)

where the connection again Levi-Civita connection ∇ := ∇. Explicitly, this
Lagrangian may be written as follows by assuming a Cartesian frame for the sake
of the simplicity:

L := T (∂0u
i, ∂j ∂0u

i, ∂k∂j ∂0u
i)−U (∂k∂ju

i, ∂l∂k∂j u
i, ∂m∂l∂k∂j u

i) (5.44)

in which we explicitly highlight the dependence with respect to the displacement
and its derivatives. We recognize the formal dependence of the Lagrangian with
respect to mixed temporal and spatial derivatives of the displacement as sketched in
Eq. (5.40). In sum, the assumption that the Lagrangian density should depend on the
all set of curvature components may be a better approach since this method a priori
allows us to obtain directly a covariant Lagrangian. The expression (5.44) should
additionally satisfy the covariance requirement. Remind that L (�γαβλ) is already
covariant.

5.2.4.4 General Remark on the Strain Gradient Continuum

The previous model constitutes an improvement of Polizzotto’s previous paper
(Polizzotto 2012), owing the lack of covariance of first gradient model V (ε,∇ε).
Some particular forms of energy are found in e.g. Polizzotto (2013b) in dynamic
situation. We should however draw attention to the covariance condition of
the Lagrangian L to be admissible and then acceptable (with regards of the
diffeomorphism-invariance) list of arguments:

L (εαβ, ∂γ εαβ, ∂λ∂γ εαβ)→ L (ε,∇ε,∇∇ε)→ L (g,∇,∇∇)→ L (g,ℵ,�)
(5.45)

as has been shown in the first part of the present paper devoted to covariance of
Lagrangian function. We remind the first step which is the MCP (Minimal Coupling
Procedure) an usual method in relativistic gravitation theory. It should be stressed
that the introduction of the connection as arguments e.g. Krause (1976), rather than
the gradient of strain and its gradient, of the Lagrangian function is coherent with
the principle of equivalence applied to both the spacetime or the strain gradient
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continuum. Similarly, at every point in an gravitational field, or correspondingly at
every point of the gradient continuum, we can choose locally an inertial frame or
correspondingly a field of connection, in which the physics laws take the same form,
or for continuum mechanics correspondingly, the same Lagrangian functions have
the same form. The role of the connection goes beyond the covariance of three-
dimensional continuum and includes the aspects of gauge invariance by introducing
the local Poincaré group of transformations.

5.3 Gravitational Waves

In this subsection, we derive the basic equations due to linear perturbation of the
Minkowskian metric as for linear gravity phenomenon. Gravity is the consequence
of how massive object deforms the spacetime. Near any massive body, the spacetime
becomes curved following the change of the spacetime metric. The deformation
does not stay only near the massive body. The field equations of Einstein suggested
that the deformation can propagate throughout the entire spacetime. The main
difference compared to seismic waves is that gravitational waves can travel in empty
space at the light speed. This is typical example where the gauge invariance is useful
for deriving the wave equations of relativistic gravitation. The method is based on
linear perturbation of the metric, the Ricci curvature tensor, and the Einstein tensor.

5.3.1 Basic Equations

As an example from the strain (4.88), consider a weak field gravitation where metric
is close to Minkowski metric tensor gαβ � ĝαβ + 2εαβ , with ‖εαβ‖ << 1.2 It is
also usual to assume that at large distance from sources, the spacetime becomes
Minkowskian e.g. Dixon (1975). For classical relativistic gravitation, the Einstein–
Hilbert action is proposed by using the Ricci and scalar curvature deduced from

Eq. (4.98) as �αβ := �λλαβ and R := gαβ�αβ , and its variation hold:

SG := 1

2χ

∫

M
R ωn, δSG = 1

2χ

∫

M

[
�αβ − (1/2)R gαβ

]
δgαβ ωn

2Application of the Lagrangian formalism in general relativity may induce some difficulties,
because physical quantities in classical or special relativity framework require fixed geometric
background (Newtonian or Minkowskian spacetime). Indeed, for general relativity the spacetime
geometry is itself a dynamical object. Separation of the metric into two parts that may be
respectively assigned to inertia and gravity is an affair of taste e.g. Shen and Moritz (1996).



5.3 Gravitational Waves 207

In the second equation, the vanishing of the variation of the Einstein–Hilbert action
implies the famous Einstein field equation for gravitation:

�αβ − (1/2)R gαβ = 0 (5.46)

where it should be stressed that the partial differential equations of the metric
components gαβ are of second order. Remind that they are in principle expected
to be of fourth order as being Euler–Lagrange equations associated to Lagrange
function of type L (gαβ, ∂γ gαβ, ∂λ∂γ gαβ). Theory of special gravitation allows us
to obtain the conservation laws associated to the linearized part of Hilbert–Einstein
Lagrangian L (gαβ, ∂γ ∂λgαβ) := (1/2χ) R with:

�λαβμ = ĝλσ
(
∂μ∂αεσβ − ∂μ∂βεσα + ∂σ ∂βεμα − ∂σ ∂αεμβ

)
(5.47)

Equation (5.46) governs the dynamics of vacuum spacetime in relativistic gravi-
tation. where the unknowns are the metric components (4.98). In the presence of
moving bodies within the spacetime, the problem in relativistic gravitation is that
we have to solve, at the same time, the gravitation fields induced by the bodies and
the motion of the bodies e.g. Papapetrou (1951).

Theorem 5.1 Let M be a Minkowski spacetime with ηαβ := diag {+1,−1,−1,−1}
its metric. Assume that the metric is changed to gβμ(xλ) due a small perturbation
such that gαβ = ηαβ + 2εαβ , with εαβ << 1 following the deformation of the
spacetime M to a Riemannian manifold (spacetime). Then the scalar curvature of
the deformed spacetime B is given by:

R = 2
[
∂α∂νεαν − ηαν∂α∂ν (Trε)

]
(5.48)

Proof Let remind the components of the Cartan curvature tensor:

Rλαβμ = (∂αΓ λβμ + Γ σβμΓ λασ )− (∂βΓ λαμ + Γ σαμΓ λβσ ) (5.49)

and the Ricci curvature tensor as:

Rβμ = Rααβμ = (∂αΓ αβμ + Γ σβμΓ αασ )− (∂βΓ ααμ + Γ σαμΓ αβσ ) (5.50)

For the sake of simplicity, let consider a Cartesian coordinate system for space
associated to the flat Minkowski spacetime. The perturbated metric is given by
gαβ = ηαβ + 2εαβ where εαβ << 1. We deduce the coefficients of the connection
by retaining only the linear terms in εαβ . We obtain:

Γ αβμ � ηαν
(
∂βενμ + ∂μεβν − ∂νεβμ

)

Γ ααμ � ηαν
(
∂αενμ + ∂μεαν − ∂νεαμ

)
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After simplification, we deduce:

Rβμ = ηαν∂α
(
∂βενμ + ∂μεβν − ∂νεβμ

)− ηαν∂β
(
∂αενμ + ∂μεαν − ∂νεαμ

)

The linearized Ricci curvature tensor holds:

Rβμ = ηαν∂α
(
∂μεβν − ∂νεβμ

)− ηαν∂β
(
∂μεαν − ∂νεαμ

)
(5.51)

= ∂ν∂μεβν + ∂β∂νενμ − ∂β∂μ (Trε)− ηαν∂α∂νεβμ (5.52)

The linearized scalar curvature is deduced accordingly:

R := ηβμRβμ
= ηβμ

[
ηαν∂α∂μεβν − ηαν∂β

(
∂μεαν − ∂νεαμ

)]− ηαν∂α∂ν (Trε)

= ηβμ
[
ηαν∂α∂μεβν + ηαν∂β∂νεαμ

]− 2ηαν∂α∂ν (Trε)

= 2
[
∂α∂νεαν − ηαν∂α∂ν (Trε)

]

with Trε := ηβμεβμ. ��
By considering the group of Lorentz transformations

{
J αμ
}
, it can be checked that

the perturbation of the Minkowskian metric, as for the Minkowskian metric itself is
invariant, transform as follows:

yα = J αμxμ −→ ε′αβ = Jμα J νβ εμν

5.3.2 Equations of Linearized Gravitation Waves

We deduce the linearized Einstein’s equation of gravity Gβμ = 0 with:

Gβμ := Rβμ − (1/2)Rηβμ
= ∂ν∂μεβν + ∂β∂νενμ − ∂β∂μ (Trε)− ηαν∂α∂νεβμ
− [∂α∂νεαν − ηαν∂α∂ν (Trε)

]
ηβμ

We can re-arrange terms to highlight a D’Alembertain operator and finally to give
the equation of linearized gravitation field of vacuum without torsion:

Gβμ = − ηαν∂α∂ν
[
εβμ − (Trε)ηβμ

]

︸ ︷︷ ︸
D’Alembertian

+ ∂ν∂μεβν + ∂β∂νενμ − ∂β∂μ (Trε)− (∂α∂νεαν)ηβμ (5.53)
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Despite the fact that we have ten equations for ten unknowns, it is not yet possible, at
this step, to solve them because we have first to define a coordinate system. Indeed,
the decomposition of the metric into two terms as the flat Minkowskian metric ηβμ,
and a perturbation 2εβμ is not unique. Depending on the choice of a coordinate
system (xλ) the shape of the perturbation may be different. Two points of view
may be adopted: the first one considers the deformation of the spacetime itself from
Minkowskian M with metric ηβμ to a non Minkowskian spacetime B with metric
gβμ(x

λ). It should be stressed that if the metric gβμ obeys the Einstein’s equations
on the spacetime B, then the perturbation εβμ obeys the linearized equations of
gravitation on the Minkowskian spacetime M . At this step, the above equation is
too complicated to be solved, then a first method consists in defining the trace-
reversed deformation of the Minkowskian metric tensor:

εβμ := εβμ − (1/2)Tr(ε)ηβμ ←→ εβμ := εβμ − (1/2)Tr(ε)ηβμ
(5.54)

owing that Tr(η) = ηαν ηαν = 4. We also obtain Tr(ε) = −Tr(ε). Introducing the
trace-reversed perturbation within the Einstein tensor equation, we have:

− ηαν∂α∂νεβμ + ∂ν∂μεβν + ∂ν∂βενμ −
(
∂α∂νεαν

)
ηβμ = 0 (5.55)

Under the assumption of linearized weak gravity, we obtained a system of 10 linear
partial differential equations for the trace-reversed variables εβμ.

Physically, the metric perturbation from a small change of originally
Minkowskian constant and uniform metric ηβμ or due to a perturbation of the
coordinate system xμ → xμ + ξμ.3 To understand the effects of small gauge
transformations, we have to use the Lie derivative (retaining only linear terms in ξ ):

Lξ gαβ = Lξ 2εαβ = 2ξγ ∂γ εαβ + ηγβ ∂αξγ + ηαγ ∂βξγ � ∂αξβ + ∂βξα := 2δεαβ
(5.56)

The last term expresses the metric perturbation due to an infinitesimal change of
coordinates by vector ξ . In terms of the trace-reversed perturbation, we have:

2δεαβ = 2δεαβ − (1/2)Tr (2δε) ηαβ = ∂αξβ + ∂βξα −
(
∂νξν

)
ηαβ (5.57)

This means that this gauge transformation (local translation vector ξ ) leads to a new
trace-reversed perturbation ε′βμ = εβμ + ∂βξμ + ∂μξβ − (∂νξν) ηβμ. We have ten
equations for the linearized gravity with ten unknowns for the metric perturbation,
for either εβμ or εβμ. The choice of a coordinate system to solve them introduce
four more spacetime variables xμ. Therefore we need four additional equations

3In some sense, gauge invariance may be also interpreted as a infinitesimal coordinate transforma-
tions.
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which are merely the gauge equations. Let introduce the Lorentz gauge (also called
Einstein gauge, Hilbert gauge, de Donder gauge or Fock gauge). Starting from
the coefficients of connection Γ λμν(x), the Lorentz gauge imposes that the skew-
symmetry part of the connection is equal to zero, together with its linearized version:

gμν Γ λμν = 0 −→ ημν ηρλ
(
∂μερν + ∂νεμρ − ∂ρεμν

) = 0 (5.58)

We deduce the linearized Lorentz gauge ηλρ∂μερμ − (1/2)∂λTr(ε) = 0. The
previous gauge invariance condition is required for both of them. Classically, the
so-called Lorentz gauge is re-written for linearized gravitation ∂μεβμ ≡ 0. This
gauge condition must be also satisfied when the gauge transformations are applied:

∂με′βμ = ∂μ
[
εβμ + ∂βξμ + ∂μξβ −

(
∂νξν

)
ηβμ
] = ∂μεβμ + ∂μ∂μξβ ≡ 0

(5.59)

The relation has a gauge invariance property if the equation ∂μεβμ + ∂μ∂μξβ ≡
0 has solution in ξ . Such is the case, then there are infinity of vector fields that
satisfy this condition for any choice ∂μεβμ. Finally, in the case of Lorentz gauge,
the linearized equations of gravity take the following form:

ηαν∂α∂ν εβμ = � εβμ = 0 (5.60)

This is a wave equation in the Minkowskian spacetime/continuum.

5.3.3 Limit Case of Newton Gravitation

Let consider a gravitational field generated by an isolated distribution of masses in
the limit case of Newton–Cartan gravity. Remind that the energy-momentum for
dust is given by the (2, 0) type tensor (contravariant components) T αβ := ρ0 u

αuβ

where ρ0 is the mass density in a rest frame. For non-relativistic situation where
c >> vi , we obtained respectively the components of the stress-energy tensor (from
Eq. (4.47)):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T 00 = ρ0u
0u0 = ρ

T 0i = ρ0u
0ui = ρ0

1

c2

dx0

dτ

di

dτ
= ρ v

i

c
� 0

T ij = ρ0
1

c2

dxi

dτ

dxj

dτ
= ρ v

ivj

c2
� 0

(5.61)

where ρ is the mass density in a moving frame. The linearized Einstein equation of
gravitation (Eq. (5.60)) takes the form of:

− ηαν∂α∂ν εβμ = � εβμ = 8πTβμ (5.62)
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The timelike component obeys the Poisson equation −Δε00 = 8πρ with all the
other components of εβμ equal to zero, and owing that the derivative with respect
to x0 are neglected due to the slowness of matter motion within this gravitation
field. All other components are in fact harmonic and vanishes outside the matter
distribution, meaning that at large distance the spacetime is Minkowskian. The may
be neglected and put equal to zero. By comparing to the Newtonian potential Φ
satisfying the equation ΔΦ = 4πρ, we deduce that ε00 = −2Φ. Coming back to
the perturbation term we may write:

εβμ = εβμ − 1

2
Tr (ε) ηβμ =

⎧
⎨

⎩

−Φ, β = μ = 0
Φ, β = μ �= 0
0, otherwise

(5.63)

Owing that the conventional Newtonian potential is Φ := −m/r for a planet with
mass m at distance r , we then obtain the linearized metric as:

gβμ = ηβμ + 2εβμ =

⎡

⎢
⎢
⎣

1− (2m/r) 0 0 0
0 −1− (2m/r) 0 0
0 0 −1− (2m/r) 0
0 0 0 −1− (2m/r)

⎤

⎥
⎥
⎦

(5.64)

leading to the line element for Cartesian coordinate for the space:

ds2 = [1− (2m/r)]
(
dx0
)2 − [1− (2m/r)]

i=3∑

i=1

(
dxi
)2

This is an approximate value of line element for a star or planet in the weak-
field limit. In other words, this metric corresponds to a gravitation field due to a
static distribution of matter in the linear approximation. The Newtonian potential
completely determines the metric of the spacetime.

5.3.4 Gravitational Waves

We omit the overline bar for the sake of the simplicity for notation. Let now consider
the vacuum solutions of the linearized gravitation equations of Einstein. A recent
review on the sources and the technology used for their detection may be found in
e.g. Riles (2013). Starting from the D’Alembertian (ten scalar) equations � εβμ =
0, we search for solutions taking the form of:

εβμ := �e
(
Eβμ e

jkαx
α
)
= �e

(
Eβμ e

jkix
i

ejk0x
0
)

(5.65)
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where kα is the wave vector. Owing that the D’Alembertian operator ∂α∂α leads to
the following equation for exponential function:

∂α∂
α
[
�e
(
Eβμ e

jkix
i

ejk0x
0
)]
= −kα kα

[
�e
(
Eβμ e

jkix
i

ejk0x
0
)]
= 0

(5.66)

A non null solution exists if and only if −kα kα = 0 meaning that the wave vector
is null. In some sense the gravitational waves propagate at the speed of light. It is
usual to define a frequency-like variable k0 := −ω and then write the dispersion
equation (nullity of the wave vector) as follows (this resembles to classical equation
of dispersion in continuum mechanics): ω2 = k2

1 + k2
2 + k2

3. To this dispersion
equation, it should be also reminded the Lorentz gauge ∂μεβμ = 0 leading to four
algebraic linear equations:

− kμEβμ = 0 (5.67)

First, the Lorentz gauge equation eliminates 4 of the degrees of freedom and
let 6 degrees in the amplitude Eβμ. Second, we have seen that considering the
infinitesimal transformations (possibly interpreted as a change of coordinates)
xμ → xμ + ξμ leads to the equation ∂μεβμ + ∂μ∂μξβ ≡ 0 and has solution in
ξβ whenever �ξβ = −∂μεβμ for any given ∂μεβμ. Indeed, we can then consider
four functions with ξβ such that �ξβ = 0. By introducing the particular gauge
vector:

ξβ := �e
(
jBβ e

jkαx
α
)

(5.68)

which obviously satisfies the D’Alembertian operator �ξβ = −∂μεβμ = 0. The
perturbation of the metric due to this change of coordinates holds as previously:

ε′βμ = εβμ + ∂βξμ + ∂μξβ −
(
∂νξν

)
ηβμ (5.69)

Introducing the expression of the ξβ in this formula gives:

Eβμ → Eβμ − kβBμ − kμBβ + kνBνηβμ (5.70)

where we can choose the amplitudeBβ however we want. Replacing the term−k1 =
k0 := −ω, we can focus on the following components of Eβμ (trace and mixed
space-time terms):

⎛

⎜⎜
⎝

(1/2)Eαα
E01

E02

E03

⎞

⎟⎟
⎠

new

=

⎛

⎜⎜
⎝

(1/2)Eαα
E01

E02

E03

⎞

⎟⎟
⎠

old

+

⎡

⎢⎢
⎣

ω k1 k2 k3

−k1 ω 0 0
−k2 0 ω 0
−k3 0 0 ω

⎤

⎥⎥
⎦

⎛

⎜⎜
⎝

B0

B1

B2

B3

⎞

⎟⎟
⎠ (5.71)
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where the involved 4× 4 matrix is invertible (the determinant is equal to 2ω4). We
can thus choose the amplitude Bμ (which is equivalent to choose a new coordinate
system) by solving the previous equation as:

⎛

⎜⎜
⎝

(1/2)Eαα
E01

E02

E03

⎞

⎟⎟
⎠

old

+

⎡

⎢⎢
⎣

ω k1 k2 k3

−k1 ω 0 0
−k2 0 ω 0
−k3 0 0 ω

⎤

⎥⎥
⎦

⎛

⎜⎜
⎝

B0

B1

B2

B3

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠ (5.72)

because the solution in Bμ is unique. Therefore, we have in sum eight independent
conditions for the amplitude Eβμ and let two remaining polarizations of the
gravitational waves:

⎧
⎨

⎩

Eβμ k
μ = 0

Eβμ η
βμ = 0

E0μ = 0
(5.73)

which can be classified as transverse-traceless gauge conditions. For β = 0, the
first line of Eq. (5.73) combined with the third line of (5.73) induces that E00 ω =
E0μkμ = 0, and thus E00 = 0 since ω �= 0 (presence of wave). The amplitude
wave is purely spatial since E00 = 0 and E0μ = 0. The wave amplitude is traceless
Eβμ η

βμ = 0, and the wave is transverse since Eij kj = 0. Let now choose a
spatial coordinate such the wave is travelling in the x3 direction; that is: kμ =
(ω, 0, 0,−ω), which by the way induces E3μ = 0. So, in general we can write the
matrix amplitude as:

Eβμ =

⎡

⎢
⎢
⎣

0 0 0 0
0 E11 E12 0
0 E12 −E11 0
0 0 0 0

⎤

⎥
⎥
⎦ (5.74)

because Eβμ is traceless and symmetric. The metric perturbation is then traceless
and perpendicular to the wave vector. The gravitational wave is also called graviton
in the language of particle physics. Since the amplitude matrix has only two
independent components, it has two polarization states as for massless particles:
E+ := (1/2)(E11−E22) and E× := E12. Discussion about gravitational waves and
graviton particles may be found in the literature e.g. Ryder (2009). The perturbed
metric associated to the gravitational waves induces the line element:

ds2 = (dx0)2 −
[
1+�e(E+ejkαxα )

]
(dx1)2 − 2�e(E× + ejkαxα )dx1dx2

−
[
1−�e(E+ejkαxα )

] (
dx2
)2 + (dx3)2 (5.75)
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This is the local spacetime metric with perturbation which can strike matter.
Consider first the case E× ≡ 0, the line element holds as:

ds2 = (dx0)2 −
[
1+�e(E+ejkαxα )

]
(dx1)2

−
[
1−�e(E+ejkαxα )

] (
dx2
)2 + (dx3)2

showing that two particles initially on the diameter of a circle, hit by the gravita-
tional wave will move apart and then move closer together, according to the time
evolution �e(E+ejkαxα ), which is a oscillatory function. For the case E+ = 0 it is
usual to rotate the coordinate system to:

x̃1 = x1 cos(π/4)+ x2 sin(π/4)
x̃2 = −x1 sin(π/4)+ x2 cos(π/4)

The line element in this new coordinate system holds:

ds2 = (dx0)2 −
[
1+�e(E×ejkαxα )

]
(dx̃1)2

−
[
1−�e(E+ejkαxα )

] (
dx̃2
)2 + (dx̃3)2

showing that this motion corresponds again to a oscillation of the same type as
previously but with respect to π/4 rotated axes. It conforms to the results stating
that the linearized Einstein equations for weak field in relativistic gravitation have
wave solutions and then predict the existence of gravitational waves, which is a
propagative disturbance of the spacetime itself. The search of gravitational waves
has various physical motivations e.g. Riles (2013), and experiments for detecting
them began in the sixties. However, up to now, experimental measurements of
gravitational waves are still great challenge in cosmology and remain an active
research domain e.g. Abbott et al. (2016), a paper with more than 1000 co-authors
from LIGO Scientific Collaboration and Virgo Collaboration, where results on
the first direct detection of gravitational waves (nearly 100 years after Einstein
prediction) based on the measurements of merging of two stellar-mass black holes,
is recently reported.

Remark 5.10 The background theory for detecting gravitational waves is based on
the concept of geodesic deviation for spinless particle. An alternative method is
based on the relativistic top motion. Extension to spinning particle was conducted in
e.g. Nieto et al. (2003) to include the effects of the spin and where a covariant formu-
lation of the relativistic top deviation was developed. A Lagrangian formulation of
the so-called Mathisson-Papapetrou equations in the Riemann–Cartan framework,
the basic theory for extended and pole-dipole system, was conducted in e.g. Leclerc
(2005). It should nevertheless mentioned that the Lagrangians suggested in Leclerc
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(2005) are not covariant although the deduced Euler–Lagrange are the covariant
equations of Mathisson-Papapetrou.

5.3.5 Elementary Bases for Measurement of Gravitational
Waves

From the amplitude matrix (5.74), we can extract two linear polarizations:

Eβμ =

⎡

⎢
⎢
⎣

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎤

⎥
⎥
⎦ , Eβμ =

⎡

⎢
⎢
⎣

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎤

⎥
⎥
⎦ ,

and two other circular polarizations:

Eβμ =

⎡

⎢
⎢
⎣

0 0 0 0
0 1 i 0
0 i −1 0
0 0 0 0

⎤

⎥
⎥
⎦ , Eβμ =

⎡

⎢
⎢
⎣

0 0 0 0
0 1 −i 0
0 −i −1 0
0 0 0 0

⎤

⎥
⎥
⎦ ,

The basic idea behind the experimental measurement of gravitational waves is to
consider two test particles, a single test does not feel the waves since it is moving
on its geodesic path. Only its coordinates xμ might be determined when analyzing
its motion. For the sake of the simplicity let us consider two particles distant of
Δx1 along the x1 axis. Say a rectilinear polarized wave orthogonal to the vector
separating the two test particles. The proper distance � between them reduces to:

� :=
∫ x1=Δx1

x1=0

√
g11(dx1)2 =

∫ x1=Δx1

x1=0

√
g11 dx

1 =
∫ x1=Δx1

x1=0

√
1+ h11 dx

1

This distance may be approximated by its Taylor expansion:

� �
[
1+ (1/2)h11(x

0, x1, x2 = 0, x3 = 0
]
Δx1

This means that the amplitude of the gravitational wave h11(t) may be interpreted
as the variation of the proper distance between two test particles. The concept
of two test particles is now extended to a set of particles which are on a circle
in the presence of gravitational waves. Their motions thus measure the incident
gravitational waves according to Fig. 5.6.
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Fig. 5.6 Initial test particles set on a circle are moving: (a) on the left when particles are subject to
a rectilinear polarized gravitational waves (motion of each particle is linear and harmonic), and (b)
on the right when the set of particles are subject to a circular polarized gravitational waves (motion
of each particle is on a circle centered on the initial position of the particle)

5.3.6 Vacuum Spacetime with Torsion

As an extended version of the Einstein gravitation theory, let us now consider the
Einstein–Cartan spacetime without matter. The geometry of the curved spacetime
with torsion is assumed to be defined by the usual Einstein–Hilbert Lagrangian:

LEH := 1

2χ
R
[
gαβ, Γ

γ
αβ, ∂λΓ

γ
αβ

]

where we explicitly mention the arguments of the curvature to point out the
influence of both the metric components and the connection coefficients. In this
subsection, the idea is to decompose the connection as a Levi-Civita connection
and the contortion tensor. The next problem for gravitational waves would then be
their (in)existence for such a spacetime with torsion. At very particular case will be
formulation in the context of teleparallel gravitation theory.

5.3.6.1 Fields Equation for Einstein–Cartan Spacetime

The Eintein–Cartan spacetime is endowed with a metric tensor gαβ , and a connec-
tion Γ γαβ with a non zero torsion tensor. The argument we will use is the contortion

tensor defined as Γ γαβ := Γ γαβ+T
γ
αβ where Γ

γ

αβ denotes the Levi-Civita connection.
Accordingly, the curvature may be decomposed into three contributions:

�γαβλ = �γαβλ +∇αTγβλ −∇βTγαλ − (TγβμTμαλ − TγαμT
μ
βλ) (5.76)

Since we have considered metric compatible connection, the scalar curvature takes
the form of:

� = � + ∇α(Tαβλgβλ − T
β
βλg

αλ)+ δαγ
(
T
γ
βμT

μ
αλ − TγαμT

μ
βλ

)
gβλ (5.77)
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where we define the following quantities, a vector and a skew-symmetric tensor,

{
Wα := Tαβλg

βλ − T
β
βλg

αλ

Tβλ := δαγ
(
T
γ
βμT

μ
αλ − T

γ
αμT

μ
βλ

) (5.78)

Let now consider the Hilbert–Einstein action in terms of Riemann curvature and the
contortion terms:

SHE := 1

2χ

∫

B

(�βλ gβλ +∇αWα + Tβλ gβλ
)
ωn (5.79)

where the two last terms are calculated by means of (5.78). By the way, it should be
mentioned that the vector Wα includes contributions of both metric and contortion.
Basically we also should remind that the contortion tensor includes both the metric
and torsion tensor. So is the case for Tβλ. Let us calculate the variation of the action
SHE :

δSHE =
∫

B

[(

�βλ − �
2
gβλ

)

+
(
Tβλ − T

2
gβλ

)
− ∇αW

α

2
gβλ

]

δgβλ ωn

+
∫

B
gβλδαγ δ(T

γ
βμT

μ
αλ − TγαμT

μ
βλ) ωn (5.80)

in which we have defined T := Tβλg
βλ = δαγ (T

γ
βμT

μ
αλ − T

γ
αμT

μ
βλ)g

βλ. If we

consider the metric gβλ and the contortion tensor T
γ
βλ as independent arguments

of the Lagrangian, the second line does not include the variation of the metric.
Therefore, the first equation of gravitation field holds:

(

�βλ − �
2
gβλ

)

+
(
Tβλ − T

2
gβλ

)
− ∇αW

α

2
gβλ = 0 (5.81)

In the absence of torsion tensor for Einstein gravitation, the field equation (5.81)
reduces to the classical gravitation equation. For Einstein–Cartan gravitation, the
presence of torsion in the spacetime induces a source term as for matter within
space, and a kind of non-uniform field of cosmological constant:

⎧
⎨

⎩

T source
βλ := Tβλ
Λ(xμ) := −T

2
− ∇αW

α

2

(5.82)

Remark 5.11 A similar result was obtained in e.g. Bamba et al. (2013) by directly
considering a teleparallel gravitation theory where the Lagrangian is assumed to
depend on the contortion tensor. These authors suggested to consider a non uniform
cosmological constantΛ(xμ). They have shown that the gravitational waves modes
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in the teleparallel gravity theory, based on the torsion, are equivalent to that of the
Einstein-gravitation, which is based on the curvature.

Recent studies have been done to investigate the influence of the torsion in the
Einstein–Cartan gravitation theory e.g. Romero et al. (2016). Similar results are
obtained such as for the role of the torsion tensor as a source of gravitation even
without matter, and also the possibility to consider the term Wα as not uniform
cosmological constant all over the spacetime. In the present study, we have a explicit
and simpler formulation of this flux quantity (expressed as a divergence) in function
of the contortion tensor. There is no need to consider the flux as boundary condition
even it is directly expressed as a divergence. The second line of the action variation
concerns the contortion tensor, and can be written as follows:

[(
gβλδαγ − gαλδβγ

)
T
μ
αλ +

(
gαμδ

β
λ − gβμδαλ

)
Tλαγ

]
δT
γ
βμ = 0

Due to arbitrariness of the contortion variation, we deduce the field equation for
contortion:

(
gβλδαγ − gαλδβγ

)
T
μ
αλ +

(
gαμδ

β
λ − gβμδαλ

)
Tλαγ = 0 (5.83)

which is an algebraic equation, meaning a constraint equation for the contortion
components. The two equations (5.81) and (5.83) constitute the complete set of
field equations for both the unknowns metric and contortion. Being an algebraic
condition of the contortion tensor, Eq. (5.83) may be better interpreted as a
constraint condition namely if a contortion field is assumed a priori.

5.3.6.2 Conservation Laws in Einstein–Cartan Spacetime

First, let us consider a curved spacetime with zero torsion. Then application of
Poincaré’s gauge invariance leads to the Eulerian variational equation for Hilbert–
Einstein action:

δSHE =
∫

B

[
(1/2χ)

(
�αβ − (�/2)gαβ

)
− T αβsource

]
Lξ gαβ ωn = 0 (5.84)

with: Lξ gαβ = gαγ∇βξγ + gγβ∇αξγ . This classically allows us to deduce the
conservation laws by accounting for the Bianchi identity ∇βGαβ = 0,

∇βT αβsource = 0 (5.85)

where we remind the definition of the Einstein tensor Gαβ := �αβ − (�/2)gαβ .
Second, we now account for the contortion tensor for a Einstein–Cartan spacetime.
The field equation (5.81) may be slightly modified to give:

�αβ − (�/2)gαβ +Λ gαβ − T αβsource = 0 (5.86)
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We recognize the usual formulation of relativistic gravitation theory. We neverthe-
less keep in mind that the cosmological term Λ(xμ) is in principle neither constant
nor uniform but depends on the contortion distribution T

γ
αβ(x

μ) within spacetime.

The term source of gravitation T αβsource depends also on the contortion field. Since we
have no boundary terms (the divergence is included in the non uniform cosmological
constant), the Poincaré’s gauge invariance in the framework of Einstein–Cartan
spacetime can be rewritten as follows without further assumption:

δSHE =
∫

B

[
�αβ − (�/2)gαβ +Λ gαβ − T αβsource

]
Lξ gαβ ωn = 0 (5.87)

where the Lie derivative has been derived in the previous chapter, the metric being
compatible with the Levi-Civita connection,

Lξ gαβ = ∇βξα +∇αξβ +
(
gαγT

γ
ρβ + gγβTγρα

)
ξρ

where the contortion tensor is present conversely to the previous Riemannian
spacetime. Introduction of this Lie derivative in the variation of Hilbert–Einstein
action and applying the integration by parts, together with the field equation (5.86)
allows us to obtain the conservation laws in the framework of Einstein–Cartan
gravitation theory:

∇α
(
T
αβ

source −Λ gαβ
)
= 0 (5.88)

since we have accounted for the first Bianchi identity involving Levi-Civita
connection and Einstein tensor ∇αGαβ = 0. It should be pointed out that the
covariant derivative in this conservation law involves the Levi-Civita connection,
rather than the initial connection. The tensor T αβsource is skew-symmetric according to
its definition (5.78).

Remark 5.12 Introducing the flux term Wα from the definition (5.78) into the
conservation law (5.88), we observe that the resulting equation leads to a second-
order partial differential equation in which the unknown is the contortion T

γ
αβ

meaning that in such a framework, the torsion tensor can propagate through the
spacetime.

For the second conservation law in terms of the contortion, let us define the
hypermomentum from the field equation (5.83):

Σαβγ :=
(
gαλδμγ − gμλδαγ

)
T
β
μλ +

(
gμβδαλ − gαβδμλ

)
Tλμγ (5.89)

Then the contribution of the contortion to the Eulerian variation of the Hilbert–
Einstein action holds:

δSHE =
∫

B
. . .+

∫

B
Σαβγ LξT

γ
αβ ωn



220 5 Topics in Continuum Mechanics and Gravitation

where the Lie derivative of the contortion tensor was derived in the previous chapter:

LξT
γ
αβ = ξρ∇ρTγαβ − T

ρ
αβ∇ρξγ + T

γ
ρβ∇αξρ + Tγαρ∇βξρ (5.90)

5.3.6.3 Case of Teleparallel Gravitation Theory

Let us now consider a particular case where the Riemannian curvature vanishes
�γαβλ ≡ 0. In such a case, the contribution of the contortion T

γ
αβ exactly

compensates the vanishing effects of the curvature associated to the Levi-Civita
connection �γαβλ ≡ 0. The curvature takes the form of:

�γαβλ = ∇αTγβλ −∇βTγαλ − (TγβμTμαλ − TγαμT
μ
βλ) (5.91)

which is a particular case of the previous model of Einstein–Cartan gravitation.
Then, up to a divergence term which may be dropped by choosing appropriate
boundary conditions, it may be reminded that the Einstein gravitation theory can
be described in terms of contortion: It is called the Teleparallel Gravitation Theory
e.g. Aldrovandi and Pereira (2013). Up to divergence terms and by using specific
boundary conditions, the alternative Lagrangian function reduces to the action, see
Eq. (4.107) for more details,

S = (1/2χ)
∫

M
δαγ

(
T
γ
βμT

μ
αλ − TγαμT

μ
βλ

)
gβλωn (5.92)

where the trace operator contracts the indices α and γ to obtain the Ricci curvature,
and the multiplication with the metric gβλ is applied to calculate the scalar
curvature. The Lagrangian function thus depends on the contortion and the metric. It
might be possible to use the Minkowski metric to calculate the scalar curvature ηβλ,
although it seems not clear at this point. We now introduce the Lagrangian variation
of the contortion field ΔTγαβ = δTγαβ +LξT

γ
αβ (as a remind in terms of the Eulerian

variation and the Lie derivative variation) to obtain the constitutive laws:

ΔS =
∫

M
Δ
[
L
(
gαβ,T

γ
αβ

)
ωn

]
(5.93)

where the metric gαβ and the contortion T
γ
αβ are considered as independent

arguments of the Lagrangian. By dropping the Riemann curvature term, the field
equation is simplified in such a case:

Λ gαβ − T αβsource = 0 (5.94)

whereas the conservation law remains unchanged:

∇α
(
T
αβ

source −Λ gαβ
)
= 0 (5.95)
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owing that no contribution of the curvature occurs even in the general case. It
should be stressed that the field equation (5.94) trivially induces the conservation
Eq. (5.95). In the framework of teleparallel gravitation theory, the contortion tensor
is determined algebraically rather than calculated with partial differential equations.
Accordingly, there is no possibility of torsion to propage in Eq. (5.94).

5.3.6.4 Spacetime with Spherical Symmetry

In this illustrating example, we are looking for a spherical symmetric solution of the
metric gαβ(xμ) and the contortion T

γ
αβ(x

μ). Spherical coordinates (xμ) = (x0 :=
ct, r, θ, ϕ) are used. Adopting the tetrads approach, we choose the following tetrads,
index i for row and index α for column, and their inverse:

F iα =

⎡

⎢⎢
⎣

R(r) 0 0 0
0 1/R(r) 0 0
0 0 r 0
0 0 0 r sin θ

⎤

⎥⎥
⎦ , F αi =

⎡

⎢⎢
⎣

1/R(r) 0 0 0
0 R(r) 0 0
0 0 1/r 0
0 0 0 1(r sin θ)

⎤

⎥⎥
⎦

(5.96)

The associated induced metric writes gαβ := F iαηijF
j
β , where ηij :=

Diag{1,−1,−1,−1} denotes the Minkowskian spacetime metric,

gμν =

⎡

⎢⎢
⎣

R2(r) 0 0 0
0 −1/R2(r) 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

⎤

⎥⎥
⎦ (5.97)

It is worth to determine the coefficients of the connection Γ
γ

αβ from the metric
gαβ . The only non vanishing (symmetric) connection Levi-Civita coefficients are
the following:

Γ
0
01 =

R′(r)
R(r)

= Γ 0
10,

Γ
1
00 = R′(r)R3(r), Γ

1
11 =

R′(r)
R(r)

, Γ
1
22 = −rR2(r), Γ

1
33 = −rR2(r) sin2 θ

Γ
2
21 =

1

r
= Γ 2

12, T2
33 = − sin θ cos θ

Γ
3
31 =

1

r
= Γ 3

13, Γ
3
32 = cot θ = Γ 3

23
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We remind the expression of the torsion with the tetrads approach:

ℵγαβ := Fγi
(
∂αF

i
β − ∂βF iα

)
.

The only eight non vanishing components of the torsion tensor are:

ℵ0
01 = −

R′(r)
R(r)

= −ℵ0
10,

ℵ2
12 =

1

r
= −ℵ2

21 = ℵ3
13 = −ℵ3

31,

ℵ3
23 = cot θ = −ℵ3

32

From the torsion we calculate the contortion tensor. Accordingly, the eight non
vanishing components are (we remind that contortion tensor is neither symmetric
nor skew-symmetric), all others are equal to zero,

T0
01 = −

R′(r)
R(r)

,

T1
00 = R′(r)R3(r), T1

22 = rR2(r), T1
33 = rR2(r) sin2 θ

T2
21 = −

1

r
, T2

33 = sin θ cos θ

T3
31 = −

1

r
, T3

32 = − cot θ

The non vanishing (nonsymmetric) connection coefficients are:

Γ 0
10 =

R′(r)
R(r)

, Γ 1
11 = −

R′(r)
R(r)

, Γ 2
12 =

1

r
, Γ 3

13 =
1

r
, Γ 3

23 = cot θ,

(5.98)

Introducing the constitutive laws, and the expressions of the connection with the
contortion tensor allows us to obtain differential equations governing the unknown
R(r). It should be stressed that the calculus of these coefficients is also possible by
directly using the relation Γ γαβ := Fγi ∂αF iβ . As mentioned in e.g. Ferraro and Fiorini
(2011), the teleparallel approach for gravitation, i.e. by assuming a Lagrangian
depending on the scalar T , allows to show that the Schwarzschild spacetime may
be solution for only very special case where the dependence is linear. A nonlinear
dependence L = f (T ) induces other spacetimes.

Remark 5.13 Searching for gravitational waves in the framework of modified
teleparallel gravity was done in e.g. Bamba et al. (2013). They explicitly showed
that there is an equivalence between teleparallel gravity approach and Einstein
approach. In the previous section, Einstein gravitational waves was reminded for
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self-consistence of the book. The gravitational wave equation within a teleparallel
gravitation should be now derived by means of the affine connection with non zero
torsion. The use of affine connection different from the classical Christoffel symbols
Γ
γ

αβ means that the background geometry and by the way the derivative operators
are not completely described by only the metric gαβ but also by another independent
tensor filed, the contortion T

γ
αβ , or equivalently by the torsion tensor ℵγαβ .

5.4 Geodesic and Autoparallel Deviation for Gravitational
Waves

The previous example on gravitational waves illustrates a well-known application of
the so-called geodesic deviation equation e.g. Nieto et al. (2007). The measuring of
the separation of two neighbored geodesic curves, which are the trajectories of two
small points (see Fig. 5.6) in a Riemann spacetime may be evaluated by means of the
separation acceleration that we briefly remind in this section. Some previous studies
have extended this deviation equation to include the relativistic top moving in a
gravitational field e.g. Nieto et al. (2007), or to reformulate the geodesic deviation in
terms of teleparallel gravity (Darabi et al. 2015) (in this approach the torsion field is
considered to engender the gravity field, instead of the curvature). The contribution
of the present subsection is slightly different since we are interested in developing
the extension of the deviation equation for geodesics to autoparallel curves where
the spacetime is curved with torsion.

5.4.1 Geodesic Equation for Newtonian Mechanics

For Newton mechanics, a geodesic is a curve along which a particle moves as free
falling particle. The concept of geodesic deviation is based on the comparison of two
geodesic curves in the spacetime (t, xa) for Newton spacetime and (xα) for Einstein
and Einstein–Cartan spacetime. In this section we will consider the formulation of
three cases of geodesic (autoparallel for Einstein–Cartan gravitation) curves. But for
the present paragraph we remind the basics for geodesic equation and deviation in
the framework of Newtonian mechanics within the framework of gravitation field
due to a potential Φ(xμ). For Newton gravitation, the equations of motions are
respectively for the two particles:

ẍa(t) = −∂aΦ(P ), z̈a(t) = −∂aΦ(Q) = −∂aΦ(P ) + ξ̈ (t) (5.99)

Expanding the gradient of the gravitation potential about the point P gives:

−Φ(Q) = −Φ(P) − ∂bΦ(P ) ξb −O(ξ)
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Fig. 5.7 Curves (γ0) and (γ1) are geodesics or autoparallel. At each time t of τ , points P and Q
are separated by the vector ξ := PQ depending on the time. The vector u is a unit vector tangent to
the geodesic lines satisfying ∇uu = 0. The two vectors satisfy also ∇ξu = ∇vξ . t is the parameter
along the trajectories of particles, and τ is a parameter along geodesic or autoparallel

This gives the expression of the acceleration of the geodesic deviation:

d2ξa

dt2
= −∂a∂bΦ ξa (5.100)

which represents the geodesic deviation equation in Newtonian mechanics, and
gives the expression of the distance acceleration of two particles falling in a nonuni-
form gravitation field Φ(t, xa). We recognize the components of the curvature
tensor introduced in the Newton–Cartan theory of gravitation (4.13) reduced to
second-order derivatives of the gravity potential (Fig. 5.7).

To go further, the Lagrangian for classical gravitational field is given by:

L := ρ(xμ)Φ(xμ)− 1

8πG

(∇Φ(xμ))2

Variation of the resulting action with respect to the potential φ, and after integrating
by parts, the Euler–Lagrange equation holds e.g. Ryder (2009): ΔΦ = −4πG ρ
which relates the potential due to the mass density ρ(xμ). Consider a spherical
body as illustration. Outside a spherically object of mass M , the solution gives
the Newtonian gravitational potential Φ = GM/r . As illustration of the geodesic
deviation problem (5.100), Greenberg in the seventies found the geodesic deviation
equation for a spherical body (earth model) as (Greenberg 1974):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d2ξr

dτ 2 − 2ωθ
dξϕ

dτ
+ 3ω2

θ ξ
r = 0

d2ξθ

dτ 2 + ω2
θ ξ

θ = 0

d2ξϕ

dτ 2 + 2ω2
θ

dξr

dτ
= 0

(5.101)
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in a spherical coordinate (r, θ, ϕ) where he has chosen a circular orbit in the
equatorial plane r0 = R, θ0 = π/2, ϕ0(

√
m/r3) x0. Determination of this particular

orbit is obvious. We temporarily use the notation x0 := τ = ct to avoid odd
notation as d(x0)2. We denoted m := GM/c2 and ωθ := m/r3. The resolution
of the geodesic deviation equation (5.101) is straightforward (Philipp et al. 2015):

⎧
⎪⎪⎨

⎪⎪⎩

ξr = C1 + C2 sin(ωθ τ )+ C3 cos(ωθτ )
ξθ = C4 sin(ωθτ )+ C5 cos(ωθ τ )

ξϕ = −3

2
C1ωθ t + 2 [C2 sin(ωθτ )− C3 cos(ωθ τ )]+ C6

where the constants Ci correspond to various possibilities to perturb the geodesic
considered. By the way it was found that the effect of the earth oblateness on the
geodesic deviation ξ(t) dominates by far the effect of general relativity (Greenberg
1974). This supports the use of Newtonian mechanics for most past space research
and satellite launches. Nevertheless, future satellite mission in faraway space would
require the knowledge of relativistic effects of gravitation, particularly on the effects
of tidal forces on satellite.

5.4.2 Geodesic Deviation Equation in Riemannian Manifold

First, let consider two geodesic curves in the pseudo-Riemann spacetime (M , gαβ)

denoted by γ0 and γ1 respectively. At the same propertime τ , we define the
separation four-vector ξα of the spacetime M which connects a point (event) xα(τ )
of the geodesic γ0 to a point (event) xα(τ ) + ξα(τ ) of a nearby geodesic γ1. The
separation ξα is small in such a way that any expansion of tensor function of ξα with
respect to ξα can be truncated to only the first-order terms. It is reminded that the
relativistic acceleration aα of two material points is defined as the second derivative
of the separation vector ξα as the two material points move along their respective
geodesics. Let define the separation velocity and deduce the separation acceleration
as follows:

vα := uβ∇βξα, aα := uβ∇βvα (5.102)

where uβ := dxβ/dτ is the four-vector velocity (timelike vector). From the
definition (5.102), we write:

⎧
⎪⎨

⎪⎩

vα = uβ
(
∂βξ

α + Γ αβγ ξγ
)
= dξα

dτ
+ Γ αβγ uβξγ

aα = uβ
(
∂βv

α + Γ αβεvε
)
= dvα

dτ
+ Γ αδεuδvε

(5.103)
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where we have introduced the expressions:

dξα

dτ
:= uβ∂βξα, dvα

dτ
:= uβ∂βvα

after the general expression dϕ/dτ := ∂f/∂β dx
β/dτ . First, substituting the

separation velocity into the expression of the separation acceleration, gives:

aα = d2ξα

dτ 2 + d

dτ

(
Γ
α

βγ u
βξγ
)
+ Γ αδε

(
dξε

dτ
+ Γ εβγ uβξγ

)
uδ (5.104)

Second, let write the geodesic equations for the two curves γ0 and γ1:

⎧
⎪⎨

⎪⎩

d2xα

dτ 2
+ Γ αβγ (xμ)

dxβ

dτ

dxγ

dτ
= 0

d2 (xα + ξα)
dτ 2 + Γ αβγ (xμ + ξμ)

d
(
xβ + ξβ)
dτ

d (xγ + ξγ )
dτ

= 0
(5.105)

Since all components ξα are small, we need to retain only the first-order terms after
expansion of the second equation. We thus obtain:

d2ξα

dτ 2 +
(
Γ
α

βγ + Γ αγβ
)
uβ
dξγ

dτ
+ ∂Γ

α

βγ

∂xδ
uβuγ ξδ = 0 (5.106)

Introducing Eq. (5.106) in the separation acceleration leads to the expression:

aα =
(
Γ
α

βγ − Γ αγβ
)
uβ
dξγ

dτ
+
(
∂δΓ

α

βγ − ∂γ Γ αβδ + Γ αδεΓ εβγ − Γ αγ εΓ εβδ
)
uβξγ uδ

(5.107)

where we have worthily used the orthogonality condition duβ/dτ = uε∂εu
β =

uε∇εuβ−uεΓ βεδξδ . Conventionally, we then deduce that the separation acceleration
is written as follows for Levi-Civita connection in a Riemann manifold e.g. Levi-
Civita (1927), Synge (1934):

D2ξα

Dτ 2 = �αδγβ uβuδ ξγ (5.108)

The geodesic deviation equation (5.108) due to Levi-Civita for Riemannian space
shows that the curvature produces acceleration of the separation between two
neighboring geodesics γ0 and γ1. This provides a geometrical interpretation of
the curvature tensor. The geodesic deviation equation constitutes a fundamental
equation for relativistic gravitation since it relates the relativistic acceleration of two
nearby particles in presence of gravitation field. In a flat spacetime, the separation
will be linear. Equation (5.108) allows us to analyze numerous motions of particles



5.4 Geodesic and Autoparallel Deviation for Gravitational Waves 227

in gravitational field, such as the chaotic behavior of particles orbits but they are not
well-suited to study spinning particles, either for microscopic with intrinsic spin or
macroscopic bodies with intrinsic spin e.g. Leclerc (2005).

5.4.2.1 Application to Schwarzschild Spacetime

For the sake of the clarity, let us consider the example of Schwarzschild spacetime
with the line element:

ds2 =
(

1− 2m

r

)
(dx0)2 −

(
1− 2m

r

)−1

dr2 − r2dθ2 − r2 sin2 θdϕ2

The coefficients of Levi-Civita connection for a Schwarzschild spacetime are
directly calculated from the metric (4.33):

Γ
1
00 =

m

r3 (r − 2m), Γ
0
01 = Γ 0

10 =
m

r(r − 2m)
, Γ

1
11 = −

m

r(r − 2m)
,

(5.109)

Γ
2
12 = Γ 2

21 =
1

r
, Γ

1
22 = −(r − 2m), (5.110)

Γ
3
13 = Γ 3

31 =
1

r
, Γ

1
33 = −(r − 2m) sin2 θ, (5.111)

Γ
2
33 = − sin θ cos θ, Γ

3
23 = Γ 3

32 =
cos θ

sin θ
, others = 0 (5.112)

It extends the symbols of Christoffel of spherical coordinates (2.32) of the 3D
space. We then obtain the Riemann curvature components by using the definition of
the curvature tensor:

�0
101 = −

2m

r2(r − 2m)
, �0

202 =
m

r
, �0

303 =
m

r
sin2 θ,

�1
010 = −

2m

r4 (r − 2m), �1
212 =

m

r
, �1

313 =
m

r
sin2 θ,

�2
020 =

m

r4 (r − 2m), �2
121 =

m

r2(r − 2m)
, �2

323 = −
2m

r
sin2 θ

�3
030 =

m

r4 (r − 2m), �3
131 =

m

r2(r − 2m)
, �3

232 = −
2m

r

Staying in the example of satellite launches and their relativistic motions, it is worth
to consider only timelike geodesics, which are the trajectories of massive particles
at subliminal speed. Anyhow, in order to apply the geodesic deviation equation,
we should start search for general forms of geodesic curves in the Schwarzschild
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spacetime by means of Eq. (4.12) at the initial time. The geodesic equation then
takes the following generic form:

Duγ

Dτ
≡ duγ

dτ
+ Γ γμνuμuν = 0 (5.113)

For our particular case, we obtain:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du0

dτ
+ 2m

r(r − 2m)
u0u1 = 0

du1

dτ
+ m

r3
(r − 2m)(u0)2 − m

r(r − 2m)
(u1)2

−(r − 2m)(u2)2 − (r − 2m) sin2 θ(u3)2 = 0
du2

dτ
+ 2

r
u1u2 − sin θ cos θ(u3)2 = 0

du3

dτ
+ 2

r
u1u3 + 2

cos θ

sin θ
u2u3 = 0

(5.114)

From the Schwarzschild metric (4.33), we also write the line element divided by dτ :

(
ds

dτ

)2

=
(

1− 2m

r

)
(u0)2 − 1

1− 2m/r
(u1)2 − r2(u2)2 − r2 sin2 θ(u3)2

(5.115)

where uμ := dxμ/dτ denotes the four-velocity (x0 := ct). When we choose the
time coordinate as x0 := t , the timelike line element is equal to ds2 := c2dτ 2,
whereas if we adopt x0 := ct , then we have ds2 = dτ 2. The four-velocity is
normalized, then the term ds/dτ = −1, 0,+1 takes one of these three constants.
Lightlike geodesics ds/dτ corresponds to massless particles. First, we consider
radial geodesic spacetime curves, we can limit to the two first rows and consider
u2 ≡ 0, and u3 ≡ 0 which are compatible. Owing that u1 := dr/dτ , we can
integrate the first equation of (5.114) (related to the conservation of energy):

du0

u0
+ 2m

r(r − 2m)
dr = 0 �⇒ u0

(
1− 2m

r

)
= E

If there is no initial motion in the spatial directions, the line element (5.115) gives
initial four-velocity in the time direction:

u0(0) := dx0

dτ
= cdt

dτ
= 1√

1− 2m/r
, E =

√

1− 2m

r0
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where r0 is the initial radial position. For determining the radial component for
timelike orbits ds = dτ , we now introduce u0 into (5.115) to find u1:

1 ≡
(
ds

dτ

)2

=
(

1− 2m

r

)
(u0)2 − 1

1− 2m/r
(u1)2 �⇒ u1 =

√
2m

r
− 2m

r0

For azimuthal geodesic orbits, we come back to the general Eq. (5.114). The
spherical symmetry allows us to consider orbits which remain in a plane by
choosing θ ≡ π/2, and u2(0) = 0 and so that u2 remains zero. The previous
system (5.114) reduces accordingly. The first equation leads to the same form as
previous radial geodesics, and the fourth equation gives u3 (remind that u1 ≡
dr/dτ ): u0 (1− 2m/r) = E, and u3 = L/r2. The solution in u3 may be rewritten
as follows: r2u3 := r2dϕ/dτ = L which states the conservation on angular
momentum, where L is called specific angular momentum. We can compute the
component u1 from the line element by constraining the search to timelike orbits
or the null geodesics. To begin with from relation (4.33), we write the line
element (5.115) with θ ≡ π/2:

(
ds

dτ

)2

=
(

1− 2m

r

)
(u0)2 −

(
1− 2m

r

)−1

(u1)2 − r2(u3)2

For timelike orbits ds = dτ (timelike geodesics describe the motions of massive
particles at subliminal speed) we deduce:

u1 := dr

dτ
=
√

E2 −
(

1+ L
2

r2

)(
1− 2m

r

)

For timelike geodesics, this equation can be integrated directly to give elliptic
integral. Substituting the expression of u1 leads to the second derivative of r:

u1 := dr

dτ
�⇒ d2r

dτ 2 +
m

r2 +
L2

r3

(
3m

r
− 1

)
= 0

Finally, for circular orbits r ≡ R (meaning that dr/dτ = 0 and d2r/dτ 2 = 0) we
obtain the well-known radius in terms of angular momentum L and Schwarzschild
radius from the vanishing of the second derivatives:

R = L2

2m

⎛

⎝1+
√

1− 12m2

L2

⎞

⎠ , R = L2

2m

⎛

⎝1−
√

1− 12m2

L2

⎞

⎠ (5.116)
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The other solution would be R = ∞. Coming back to the equation of geodesic
deviation (5.108), we can analyze the deviation acceleration for the circular orbit of
radius R (5.116) with the four-velocity:

⎧
⎨

⎩
u0 = E

(
1− 2m

R

)−1

, u1 =
√

E2 −
(

1+ L
2

R2

)(
1− 2m

R

)
, u2 ≡ 0, u3 = L

R2

⎫
⎬

⎭

(5.117)

Solutions of deviation of geodesics in a Schwarzschild spacetime may be found in
e.g. Fuchs (1990), Philipp et al. (2015).

Remark 5.14 From Schwarzschild metric (4.33), another way would be consid-
ering the Lagrangian: L = m∗

[
(1− 2m/r) (ẋ0)2 − (1− 2m/r)−1 ṙ2 − r2

(
θ̇2+

sin2 ϕ̇2
)]

. Since no explicit dependence on x0 and on ϕ occurs, then the derivative
of the Lagrangian with respect to ẋ0 and ϕ̇ are constant of motions:

⎧
⎪⎨

⎪⎩

m∗ dx
0

dτ

(
1− 2m

r

)
= E

m∗ dϕ
dτ

r2 sin2 θ = L
�⇒

⎧
⎪⎪⎨

⎪⎪⎩

u0 = E

m∗

(
1− 2m

r

)−1

uϕ = L

m∗
1

r2 sin2 θ

(5.118)

where E is the energy, and L the analogous of angular momentum in relativistic
gravitation. These equations conform to the previous solutions.

Remark 5.15 The radial solution can be re-written as follows:

1

2
E2 = 1

2

(
dr

dτ

)2

+ V (r), V (r) := 1

2
− m
r
+ L2

2r2 −
mL2

r3 (5.119)

where the two first terms are respectively the Newtonian potential and the contri-
bution from angular momentum (same for Newtonian and relativistic gravitation).
The third term is the proposed contribution of general relativity. The above equation
describes a analogous motion of a particle (unit mass) moving in a one dimensional
r with potential V (r). At large distance from the center, Newtonian mechanics
matches the relativistic gravitational mechanics.

5.4.3 Autoparallel Deviation in Riemann–Cartan Spacetime

The idea is now to detect the relativistic acceleration of two nearby particles when
the spacetime is curved with torsion (Shapiro 2002). First of all, it is worth to
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remind that in a Riemann–Cartan manifold the deviation from an autoparallel curve
is obtained from the definition of the deviation:

D2ξα

Dτ 2 = uγ∇γ
(
uβ∇βξα

)
(5.120)

where the connection have torsion and curvature. In a previous work, Manoff
(2001b) proposed a deviation equation by defining a priori deviation operator of the
affine connection in the presence of torsion and curvature LΓ (ξ,u) := [Lxi,∇u] −
∇[ξ,u] to extend the deviation equation to Riemann–Cartan spacetime. In the
following, this intrinsic definition can be also used to obtain with a straightforward
calculus the result (5.108) on a Riemann manifold. Let now extend to Riemann–
Cartan spacetime.

Theorem 5.2 Let (M , gαβ, Γ
γ
αβ) a Riemann–Cartan spacetime with uβ :=

dxβ/dτ , four-vector velocity (timelike vector), and ξα the separation between
two autoparallel curves γ0, and γ1. We assume the Lie derivative of uα along ξ
vanishes (as for classical assumption in general relativity) Lξ u

α ≡ 0. Then the
acceleration of the separation between γ0, and γ1 takes the form of:

D2ξα

Dτ 2
= �̃αγβρuγ ξβuρ +

(
ℵ̃ρβγ ∇̃ρuα − ℵ̃αγρ∇̃βuρ

)
uγ ξβ (5.121)

where the connection Γ̃ γαβ := Γ
γ
αβ − ℵγαβ is defined from the connection Γ γαβ by

substracting its proper torsion.

Proof First, we have to express the two main assumptions of the theorem. First the
vanishing of the Lie derivative in a Riemann–Cartan manifold writes:

Lξ u
α ≡ 0 �⇒ ξβ∇β = ξβ∇βuα − ξβℵαβμuμ (5.122)

Second, the equation of the autoparallel curves holds (for any index α):

uγ∇γ uα = 0 (5.123)

Introducing these two equations into the definition of the autoparallel deviation
gives:

D2ξα

Dτ 2 = ξγ∇γ uβ
(
∇βuα − ℵαβμuμ

)

+ ξγℵβγρuρ
(
ℵαβμuμ −∇βuα

)

+ uγ ξβ∇γ∇βuα − uγ ξβ∇γ
(
ℵαβμuμ

)
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Factorizing the covariant derivative allows us to rewrite the equation as:

D2ξα

Dτ 2 = ξγ∇γ uβ
(
∇βuα − ℵαβμuμ

)

+ ξγℵβγρuρ
(
ℵαβμuμ −∇βuα

)
+ uγ ξβ∇γ

(
∇βuα − ℵαβμuμ

)

Let now define a new connection defined by ∇̃ := ∇ − ℵ, which is of course
a connection on the manifold M . Since we have assumed a metric compatible
connection, we can write the coefficients:

Γ̃
γ
αβ := Γ γαβ + T

γ
αβ − ℵγαβ = Γ γαβ +Dγαβ −Ωγαβ

The skew-symmetric part of the new connection is merely ℵ̃γαβ = −ℵγαβ . We rewrite
the separation acceleration as:

D2ξα

Dτ 2 = ξγ ∇̃γ uβ∇̃βuα + uγ ξβ ∇̃γ ∇̃βuα − ℵ̃αγρ
(
∇̃βuρ

)
uγ ξβ (5.124)

Let remind the following relation about second-order derivatives for either ∇ or ∇̃:

∇γ∇βuα − ∇β∇γ uα = �αγβρuρ + ℵμβμ∇μuα (5.125)

It is therefore straightforward to deduce the relation, by exploiting Leibniz relation
for derivative of products and by remarking the autoparallel equation:

D2ξα

Dτ 2
= �̃αγβρuγ ξβuρ +

(
ℵ̃ρβγ ∇̃ρuα − ℵ̃αγρ∇̃βuρ

)
uγ ξβ

��
For calculating the four-vector uγ , we remind the definition of auto-parallel curves.
Autoparallel curves are piecewise differential curves such that their tangent vectors
are parallel along the curves itself. In other words, autoparallel curves are the
integral curves of the differential equations e.g. Kleinert (2008):

Duγ

Dτ
:= duγ

dτ
+ Γ γμνuμuν = 0 (5.126)

It should be stressed that the skew-symmetric part of the connection is not involved
in this Eq. (5.126). For metric compatible connection, the system becomes after
Eq. (4.64):

Duγ

Dτ
:= duγ

dτ
+ Γ γμνuμuν +Dγμνuμuν = 0 (5.127)
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where Dγμν is the symmetric part of the contortion tensor Tγμν with respect to the
two lower indices. In principle, this relationship involves 40 connection coefficients
Γ
γ

μν and other 40 components for Dγμν . Symmetries may reduce the number of
components. As illustration, within Einstein–Cartan spacetime with a spherical
symmetry where the metric is of Schwarzschild type, the simplest case where the
spins of individual particles, or fluid elements composing the continuum are all
aligned in the radial direction, only the component ℵ0

23 = −ℵ0
32 := ℵ0 is not equal

to zero e.g. Prasanna (1975b).
Other approaches exist for investigating the influence of Riemann–Cartan geom-

etry on gravitation. As extension of the Schwarzschild metric, non-Riemannian
spacetime were investigated for modeling static vacuum spherical symmetric
spacetime e.g. Maier (2014). Starting with an Einstein–Hilbert action conforming
to classical relativistic gravitation, Maier introduces the covariant version of the
contortion tensor as Tαβγ := gγβ∂αΦ − gαβ∂γΦ where φ(r) is a scalar potential.
Investigating and putting apart the source of torsion, he obtains for a spherical
symmetry spacetime with torsion the diagonal metric:

g00 = e2φ
(

1− 2m

r
eφ
)
, g11 = [1− rφ′(r)]

1− (2m/r)eφ , g22 = −r2, g33 = −r2 sin2 θ

(5.128)

where when φ(r) → 0 then the asymptotic behavior of the metric merges to that
of Schwarzschild one, and then to Minkowski flat spacetime. In Maier (2014), the
function φ(r) = ln |1+ α/r| was chosen.

5.4.3.1 Application to Einstein–Cartan Spacetime Autoparallels

For investigating the influence of the torsion on the deviation equation, let consider
the Schwarzschild metric solution of the Einstein field equations surrounding a mass
M . The length ds2 is obtained from (4.33) in the system (t, r, θ, ϕ):

ds2 = (1− 2m/r) c2dt2 − (1− 2m/r)−1 dr2 − r2dθ2 − r2 sin2 θdϕ2

The metric may be written in a worth coordinate system by using a conformal
transformation of the radial coordinate: r := ρ (1+ (m/2ρ))2. This allows us to
define the expression of the length ds2 in the coordinate system (t, ρ, θ, ϕ) e.g.
Ryder (2009):

ds2 =
(

1−m/2ρ
1+m/2ρ

)2

c2dt2 −
(

1+ m

2ρ

)4 [
dρ2 + ρ2dθ2 + ρ2 sin2 θdϕ2

]

(5.129)
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On a Riemann–Cartan manifold M the tangent space of the manifold TxM
is spanned by the vector base

{
eμ := ∂μ

}
, and the dual tangent space by the

dual base {eν := dxν} (also called 1-form) when using a coordinate basis e.g.
Nakahara (1996). Since M is endowed with the Schwarzschild metric, there is
an alternative to express the metric as: g = gμνeμ ⊗ eν := ημνθ

μ ⊗ θν , with
ημν := diag {1,−1,−1,−1} with (x0 := ct):

⎧
⎪⎪⎨

⎪⎪⎩

θ0 = (1− 2m/r)1/2 dx0

θ1 = (1− 2m/r)−1/2 dr

θ2 = rdθ
θ3 = r sin θdϕ

(5.130)

which checked to give the Schwarzschild metric. {θμ,μ = 0, 1, 2, 3} is called
non coordinate dual basis. When using the isotropic coordinates (x0, ρ, θ, ϕ), the
corresponding non coordinate dual basis holds from Eq. (5.129):

⎧
⎪⎪⎨

⎪⎪⎩

θ0 = T (ρ) dx0

θ1 = S (ρ) dρ
θ2 = S (ρ) ρdθ
θ3 = S (ρ) ρ sin θdϕ

with

⎧
⎨

⎩
T (ρ) :=

(
1−m/2ρ
1+m/2ρ

)

S(ρ) := (1+m/2ρ)2
(5.131)

Of course both Eqs. (5.130) and (5.131) describe the Schwarzschild metric. We
check that Eq. (5.131) has correct behavior asymptotically when ρ → ∞. The use
of non coordinate basis holds for Cartan structure equations e.g. Nakahara (1996):

{
dθμ + ωμν ∧ θν = ℵμ
dω

μ
ν + ωμγ ∧ ωγν = �μν (5.132)

where ωμν := Γ μγν θγ is called the connection 1-form, ℵμ := 1/2 ℵμγ ν θγ ∧ θν the
torsion 2-form, and �μλ := 1/2 �μγ νλ θγ ∧ θν the curvature 2-form. Cartan structure
equations allow one to define the Cartan torsion and curvature by introducing the
connection coefficients Γ μνγ := Γ

μ

νγ + T
μ
νγ where T

μ
νγ are the coefficients of the

contortion tensor. The symbols of Christoffel Γ
γ

αβ associated to the Schwarzschild

metric in terms of isotropic coordinates (5.129) are obtained as, for γ = x0 = 0,

Γ
0
00 = 0, Γ

0
10 = ln′ T , Γ 0

20 = 0, Γ
0
30 = 0,

Γ
0
01 = ln′ T , Γ 0

11 = 0, Γ
0
21 = 0, Γ

0
31 = 0,

Γ
0
02 = 0, Γ

0
12 = 0, Γ

0
22 = 0, Γ

0
32 = 0,

Γ
0
03 = 0, Γ

0
13 = 0, Γ

0
23 = 0, Γ

0
33 = 0.
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for γ = ρ = 1,

Γ
1
00 = −

T ′T
S2 , Γ

1
10 = 0, Γ

1
20 = 0, Γ

1
30 = 0,

Γ
1
01 = 0, Γ

1
11 = ln′ S, Γ 1

21 = 0, Γ
1
31 = 0,

Γ
1
02 = 0, Γ

1
12 = 0, Γ

1
22 = ρ(1+ ρ ln′ S), Γ 1

32 = 0,

Γ
1
03 = 0, Γ

1
13 = 0, Γ

1
23 = 0, Γ

1
33 = ρ sin2 θ(1+ ln′ S).

for γ = θ = 2,

Γ
2
00 = 0, Γ

2
10 = 0, Γ

2
20 = 0, Γ

2
30 = 0,

Γ
2
01 = 0, Γ

2
11 = 0, Γ

2
21 = ln′(ρS), Γ 2

31 = 0,

Γ
2
02 = 0, Γ

2
12 = ln′(ρS), Γ 2

22 = 0, Γ
2
32 = 0,

Γ
2
03 = 0, Γ

2
13 = 0, Γ

2
23 = 0, Γ

2
33 = − sin θ cos θ.

and for γ = ϕ = 3,

Γ
3
00 = 0, Γ

3
10 = 0, Γ

3
20 = 0, Γ

3
30 = 0,

Γ
3
01 = 0, Γ

3
11 = 0, Γ

3
21 = 0, Γ

3
31 = ln′(ρS),

Γ
3
02 = 0, Γ

3
12 = 0, Γ

3
22 = 0, Γ

3
32 =

cos θ

sin θ
,

Γ
3
03 = 0, Γ

3
13 = ln′(ρS), Γ 3

23 =
cos θ

sin θ
, Γ

3
33 = 0.

In addition to the symbols of Christoffel, the Cartan connection is obtained by
adding the contortion tensor (calculated by means of torsion ℵγαβ ). Mao et al. have
derived the most general static and symmetric spherically expressions of torsion, and
also the case where the metric and the torsion are generated by a source of rotation
(Mao et al. 2007). Focusing only on the case where there is no source of torsion
by mass rotation, the additional terms for the previous Levi-Civita connection
are obtained by assuming the time translation invariance (nonzero components of
torsion have either zero or two temporal indices), the torsion is skew-symmetric in
its two covariant indices, and the symmetry under proper rotation, the most general
expressions of non vanishing torsion components are e.g. Mao et al. (2007):

ℵ0
01 = T1(ρ)

M

ρ2
, ℵ2

12 = T1(ρ)
M

ρ2
, ℵ3

13 = T2(ρ)
M

ρ2
, (5.133)

where M is a constant related to a mass, and T1, and T2 are arbitrary functions of
the radius ρ (Acedo 2015; Mao et al. 2007) (in this illustrative paragraph, they can
be set constants for the sake of the simplicity). All other components not related by
the skew symmetry are equal to zero. In such a case, the metric is not modified by
these torsion components, but the connection coefficients are now changed by the
presence of torsion. We discard the influence of any rotating bodies in the remaining
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of the paragraph. We deduce the additive terms for the contortion tensor. Only few
components of the contortion tensor do not vanish:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T0
01 = T1(ρ)

M

ρ2

T1
00 =

S2(ρ)

T 2(ρ)
T1(ρ)

M

ρ2 , T1
22 =

1

ρ2 T1(ρ)
M

ρ2 , T1
33 = ρ2 sin2 θT2(ρ)

M

ρ2

T3
31 = −T2(ρ)

M

ρ2

(5.134)
All other components are equal to zero.

Remark 5.16 However, it should be stressed that the metric compatibility of the
connection is a key assumption since the relation (4.81) has highlighted that the
torsion of the spacetime is deduced with an algebraic equation from the covariant
derivative of the connection. Therefore, this equation explicitly states that for an a
priori compatible connection, the torsion vanishes accordingly.

5.4.3.2 Spinning Particle and GravitationalWaves

In the previous paragraph we deal with the spinless particle immersed within
gravitational waves. The theoretical bases in the modelling of spinning on particle
motion within gravitation field were obtained by Mathisson e.g. Mathisson (1937),
and Papapetrou e.g. Papapetrou (1951), leading to the celebrated Mathisson-
Papapetrou equations e.g. Leclerc (2005), Nieto et al. (2007) (the name of equation
was set relativistic top deviation equation in this later reference). Without going into
details, the Mathisson-Papapetrou equations hold:

⎧
⎪⎨

⎪⎩

D2xγ

Dτ 2 = 1
2�γαβλuλΩαβ

DΩαβ

Dτ
= 0

(5.135)

whereΩαβ is the (skew-symmetric) spin tensor of the top which satisfies the Pirani
condition of orthogonality Ωαβuβ ≡ 0. Classical Mathisson-Papapetrou equations
may be obtained by means of Lagrangian of extended body:

L = m

2
gαβu

αuβ − 1

2
Γ
γ
αβgγμΩ

αμuβ (5.136)

which constitutes the first order expansion of the Riemann gravitation particle
L := (m/2)gαβuαuβ around a center of mass of a small extended body (see
Leclerc (2005) for details). It should be pointed out that this Lagrangian is not
covariant (Christoffel’s symbols are not tensors) whereas the associated Euler–
Lagrange equations (5.135) are covariant.
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Fig. 5.8 When a particle
x := (xμ) has internal
structure, in other words is
considered as a more or less
extended body with its
neighborhood dx, it would no
longer move along geodesics
of the gravitational field.
Spinning of the particle
modifies its worldline e.g.
Nieto et al. (2007)

This paragraph is merely a remind of the method that considers a small piece
of body characterized by a center of mass and an inertia of rotation (pole-dipole
model). Theoretical basis for considering the geodesic of such small extended
body is mathematically supported by theorem of Ehlers and Geroch (2004) (see
Fig. 5.8). Theoretical basis for analyzing the spinning influence is mainly resumed
in the Mathisson-Papapetrou-Dixon equations. Such a theory lies upon multipole
method which basically assumes a small rigid neighborhood, as for rigid section
in structural mechanics—beams, plates or shells in engineering mechanics e.g.
Rakotomanana (2009). In the scope of general relativistic gravitation, the element is
called gravitational skeleton. Another point of view would be to consider a Taylor
expansion of the metric tensor gαβ(xμ + dxμ) in the neighborhood dx leading to
gradient continuum (B, gαβ , Γ

γ
αβ) or to metric affine spacetime (M , ĝαβ , Γ̂

γ
αβ), for

which “local rigidity” is not assumed. Further extension of the method of multipoles
in Riemann–Cartan space may be found in e.g. Leclerc (2005), Mathisson (1937),
Papapetrou (1951). However in the present work, we only limit to the influence of
spacetime with torsion on the pole particle motion.

Remark 5.17 Further utilization of the theorem with Eq. (5.121) would be the
linearization of Eq. (4.159) in terms of metric and contortion tensors to obtain the
theoretical equations of extended gravitational waves in presence on torsion of the
spacetime. This out of the scope of the present paper.

5.4.3.3 Summary

Geodesic deviation is present for any gravitational theory. We can sketch the analogy
between Newton, Einstein, and Einstein–Cartan gravitation in the table below. In the
following table we resume the different expressions of the geodesic deviation, t is
the usual time—parameter—in classical mechanics whereas τ is the proper time of
relativistic theory (Table 5.1).

These three formulae express how the spacetime curvature and torsion influence
two nearby geodesic or autoparallel curves, making them converge to or diverge
from each other. The right-hand side terms may be considered as tidal forces. The
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Table 5.1 Expression of the
geodesic and autoparallel
deviation equation for
Newton (N), Einstein (E), and
Einstein–Cartan (EC) theories

Theory Potential Geodesic deviation

N Φ d2ξa

dt2
= −∂a∂bΦ ξa

E gαβ D2ξα

Dτ 2
= −�αβγρuγ ξβuρ

EC gαβ , Γ γαβ D2ξα

Dτ 2
= −�̃αβγρuγ ξβuρ +

(
ℵ̃ρβγ ∇̃ρuα − ℵ̃αγρ∇̃βuρ

)
uγ ξβ

analogies between the tidal forces resulting from the previous three theories appear
when we define the following quantities4:

K a
Nb := ∂a∂bΦ,

K α
Eβ := �αβγρuγ uρ,

K α
ECβ := �̃αβγρuγ uρ −

(
ℵ̃ρβγ ∇̃ρuα − ℵ̃αγρ∇̃βuρ

)
uγ

showing that the acceleration of the geodesic deviation takes the form of: K α
β ξ

β .
For Newtonian gravitation, the tidal forces do not depend on the velocity uα

conversely to Einstein and to Einstein–Cartan gravitation. For each velocity u the
right hand side of the geodesic deviation equation defines at each point P ∈ M a
linear map ξβ → K α

β ξβ of the subspace of TPM perpendicular to u, and such
that the Lie derivative vanishes [u, ξ ] = 0.

Remark 5.18 As a final remark on the deviation equations (5.100), (5.108),
and (5.121), the vector ξα may be physically interpreted as the vector separation
of two moving objects (ideally two mass points) near each other, and vector uγ

represents their initial motions. The second term is linear with respect to the
separation vector constitutes the influence of the spacetime geometry on this
separation acceleration. For Einstein–Cartan spacetime, we again observe and
stress that a non curved spacetime with torsion may induce a separation acceleration
between the two moving objects.

4The geodesic deviation equation is also called the Jacobi equation in the framework of differential
geometry.



Chapter 6
Topics in Gravitation
and Electromagnetism

6.1 Introduction

First, we remind that derivation of continuum physics equations, namely the
formulation of constitutive laws and conservation laws with respect to a given
spacetime requires the identification of physical measurable quantities with geo-
metrical variables (metric, torsion, and curvature on the material manifold). It is
mandatory that the generation and the evolution of the spacetime and the continuum
geometry, both of them are dynamical manifolds with their proper metric, torsion,
and curvature, should be specified by means of physical objects, namely material
particle, material elements as line, surface, volume, defects, and so on. Again, the
tool for deriving constitutive laws and conservation laws from a Lagrangian density
lies on the concept of variation, namely the Lagrangian variation and the Eulerian
variation (Poincaré invariance).

From the group invariance point of view, the importance of the relation between
spacetime geometry and the electromagnetic wave propagation was a starting point
to conceive the Minkowski spacetime of special relativity to render compatible
the mechanics and the classical electrodynamics. Indeed, classical mechanics is
Galilean invariant, special relativity is Lorentz invariant, and classical electromag-
netism is also Lorentz invariant. We investigate in this chapter the link between the
electromagnetism and the continuum geometry, namely the spacetime geometry.
As a slight extension, electromagnetic waves in curved spacetime such as in the
framework of relativistic gravitation is important in some extreme situations of grav-
itation as in astrophysics. For that purpose, it is worth to remind that there are four
fundamental forces in physics theory: gravitational, electromagnetic, strong nuclear,
and weak nuclear. Gravitation is a weak force whereas electromagnetic force is a
strong one. An usual question would whether gravitation affects electromagnetic
fields and what would be the level of this interaction if positive. Conversely, what
would be the influence of electromagnetism on the gravitation field. Electromagnetic
waves, including light wave propagation, are described by Maxwell’s equations
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Fig. 6.1 (Left) An electric charge q immerged within an electric field E is subject to a force
F := qE; (Right) A magnetic field B exerts on an electric charge q a force F := qv × B, where v
is the velocity of the charge with respect to the magnetic field. The presence of E and B is in fact
felt by their action on an electric charge

within Minkowskian, Riemannian or Riemann–Cartan spacetime. We consider in
this chapter some elements of the theory of interaction between gravitation and
electromagnetism (Fig. 6.1). The chosen illustrations are motivated by the analysis
of interaction between the curvature, and the torsion of the spacetime with the
electromagnetic waves.

6.2 Electromagnetism in Minkowskian Vacuum

Electromagnetism theory is built upon two fields: electric field E, and magnetic
field B. Both of them depend on the space coordinate and the time in the general
case. Experimental evidence of the two fields mainly lies on their action onto an
electric charge. Electric charge q constitutes the basis of electromagnetism theory.
Electric charge is a property of bodies at the same level as its mass. The fundamental
assumption on the electric charge is that it is conserved. This gives the first equation
of the four Maxwell’s equations due to Gauss. The flux of the electric vector field,
produced by the electric charge q , passing through a closed surface is proportional to
the total electric charge contained within that surface. It should be stressed that it is
the total charge (algebraic summation of all positive and negative charges), enclosed
by the closed surface that is considered in Gauss’ law. For the other aspect of
electromagnetism, the motion of an electric charge, induces a magnetic flux which
is also conserved across a closed surface according to the Gauss law for magnetism.
The Gauss’ law for magnetic field arises from the assumption that isolated magnetic
poles do not exist. Then the magnetic flux passing through a closed surface is equal
to zero.

Before going into the derivation of Maxwell’s equation, it is worth to remind the
notion of proper time in the framework of special relativity. Consider a body/or a
reference frame moving with a uniform velocity v with respect to another reference
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frame M . The proper time is given by (see Eq. (2.76)):

dτ :=
√

1− (v2/c2)dt

where the proper time τ along a timelike world line in the spacetime M is the laps
of time measured by a clock following that line. For the sake of the simplicity, the
proper time is nothing more than the arc length in M . Since the electromagnetic
phenomenae are present in the nature with very high speed, conversely to motion of
massive body, the electromagnetic conservation laws are derived using the proper
time.

6.2.1 Maxwell’s 3D Equations in Vacuum

The general form of the Maxwell’s equations is intimately linked to the geometry
of the spacetime vacuum defined by the Minkowski metric, they constitute the
fundamental basis of classical electrodynamics.

6.2.1.1 General Equations

Vacuum Maxwell’s equations are derived in the local coordinates of flat
Minkowskian spacetime M endowed with the metric ĝμν := {+1,−1,−1,−1}.
Coordinates of the spacetime are denoted xμ := (x0 = ct, x1, x2, x3). Conservation
laws are rigorously derived with the derivative with respect to the proper time which
is a particular case of the objective derivative defined from the concept of integral
invariance of Poincaré (Rakotomanana 2003). The derivative with respect to the
proper time τ is then be calculated by applying the transitivity rule:

∂

∂τ
= ∂x0

∂τ
∂0 = c dt

dτ
∂0 � c ∂0 (6.1)

when the velocity is small compared to the light speed v << c. Therefore, classical
three-dimensional Maxwell’s equations take the form of, where the connection of
three-dimensional vacuum space is denoted ∇̂, e.g. Gelman (1966), Kleinert (2008),
Kovetz (2000) (space is an Euclidean manifold):

⎧
⎪⎪⎨

⎪⎪⎩

∇̂ · D = ρ
∇̂ ×H− c ∂0D = J

∇̂ · B = 0
∇̂ × E+ c ∂0B = 0

(6.2)
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in which E and H are the electric and magnetic field intensities, whereas D
(displacement) and B (magnetic induction) are the electric and magnetic flux
densities. ρ and J are the volume charge density and the electric current density
respectively (they may be considered as sources of electromagnetic field). The fluxes
D and B are related to the field intensities via the electromagnetic constitutive laws.
Notice that the time derivative includes the term c2 := (ε0μ0)

−1, which is the speed
of the light and ε0 andμ0 are respectively two positive, universal constants such that
the constitutive laws for electromagnetism hold in the vacuum e.g. Kovetz (2000):

D = ε0E, B = μ0H (6.3)

Constants ε0 andμ0 are called electric permittivity and magnetic permeability of the
vacuum space, respectively. The permittivity of a medium determines its response
to an applied electric field. The value of permittivity of a vacuum space is ε0 �
8.8541878176× 10−12[C/Vm]. The magnetic permeability is deduced from ε0 and
c. At first sight, as for the electric flux intensity D, we may question why not to
use the magnetic flux intensity B as the variable to be introduced into the second
Maxwell’s equation (6.2). In the same way, we may ask why not to use the magnetic
flux D into the last equations of (6.2). As such, the Maxwell’s equations are the
conservation laws, and then by introducing theses fluxes in terms of intensity fields
E and H (constitutive laws), we arrive to the partial differential equations where the
electric and magnetic intensities are the unknowns. However, we should notice that
in reality electric and magnetic fields are experimentally detected by their action of
electric charges.

6.2.1.2 Lorentz Force

The Lorentz force due to the electromagnetic field on a material with electric charge
e is given by the summation of the two forces induced by electric field and magnetic
field:

Fem := e (E+ v× B) (6.4)

where v is the velocity of the material point with respect to a reference frame. In the
framework of classical mechanics, a charge particle is a material point with which
is associated a massm > 0 and a electric charge e positive or negative. In an inertial
frame, the (non relativistic) Newton’s law governing the motion of such a particle is
given by:

d(mv)
dt

= e (E+ v× B) (6.5)

The exerted forces on charges involve the electric intensity E and the magnetic flux
density B but not the magnetic intensity H. By the way, we should observe that
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both the magnetic intensity and the electric intensity are involved in the Maxwell’s
equations only by means of their rotational vector ∇×.

For illustrating the application of the linear momentum equation on the motion
of non-relativistic charged particle, let consider a uniform magnetic field B = B e3
without electric field E ≡ 0 (it is a drastic assumption because an electric field
should be necessarily generated with the presence of a moving electric charge). The
momentum equation (6.5) simplifies to:

dv
dt
= −Ω e3 × v, with Ω := eB

m

where the term Ω is called the gyration frequency. In component form the velocity
of the particle is governed by the system of differential equations:

⎧
⎨

⎩

v̇1
v = Ω v2

v̇2 = −Ω v1

v̇3 = 0
�⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 = x1
0 +

mv⊥
eB

sin (Ωt + α)

x2 = x2
0 +

mv⊥
eB

cos (Ωt + α)
x3 = x3

0 + v‖t
(6.6)

where v⊥ := ‖v − e3 ⊗ e3 (v) ‖ is the constant magnitude of the projection of
the particle velocity in the plane Ox1x2, v‖ = v3 (constant), and α is its initial
phase. The non-relativistic trajectory of a charged particle under a uniform magnetic
reduces to a helix with axis along the magnetic field B with a cycle T := 2π/Ω .

6.2.1.3 Continuity Equation

The first and third equations are the electric and magnetic Gauss’ laws. Only the
net charge within the enclosed surface matters in the first Gauss’ law. To date, the
existence of monopole remains questionable. Thus the right hand side of the third
Gauss’ law is identically zero. The second equation is the Ampère’s law (Maxwell
introduced the rate of displacement), and the fourth equation the Faraday’s law of
induction. Constitutive laws (6.3) allows us to obtain the complete set of equations.
From the two first equations of (6.2), we deduce the continuity equation:

∇̂ · J+ c ∂0ρ = 0 (6.7)

It should be mentioned that for a neutral conductive body in which electrons are in
motion but other ionized atoms are fixed, we deduce from Eq. (6.7): ρ = 0 and ∇̂ ·
J = 0, meaning that ρ in fact defines the density of electric free charges. Conversely,
if all charges are free of moving, with a velocity v, we can write: J = ρ v and
∇̂ · (ρv)+ c∂0ρ = 0 which corresponds to the continuity equation in the framework
of a hydrodynamic flow.
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6.2.1.4 Potential Formulation

From Eq. (6.2), we can deduce alternative expression of the electric and magnetic
fields where A and φ are the usual vector and scalar potentials of electromagnetism:

{ ∇̂ · B = 0
∇̂ × E+ c ∂0B = 0

�⇒
{

B = ∇̂ ×A
∇̂ × (E+ c ∂0A) = 0

(6.8)

The electric and magnetic fields are then defined accordingly:

E := −c ∂0A− ∇̂φ, and B := ∇̂ ×A (6.9)

For illustration, consider a spherical coordinate system (r, θ, ϕ) associated with the
local base (fr , fθ , fϕ). For the sake of the simplicity, let use the normal base (er :=
fr , eθ := fθ /r, eϕ := fϕ(r sin θ)). The relations (6.9) take the form of:

E = −

⎛

⎜
⎜
⎜
⎝

c∂0Ar + ∂rΦ
c∂0Aθ + 1

r
∂θΦ

c∂0Aϕ + 1

r sin θ
∂ϕΦ

⎞

⎟
⎟
⎟
⎠

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1

r sin θ

[
∂θ (Aϕ sin θ)− ∂ϕAθ

]

1

r

[
1

sin θ
∂ϕ(Ar)− ∂r (rAϕ)

]

1

r
[∂r (rAθ)− ∂θAr ]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

A spherical symmetric electromagnetic field {Φ(r, t),A(r, t)} then leads at most to
the non vanishing components (other components are equal to zero):

⎧
⎨

⎩

Er = −c∂0Ar − ∂rΦ
Eθ = −c∂0Aθ

Eϕ = −c∂0Aϕ

,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Br = cos θ

sin θ

Aϕ

r

Bθ = −Aϕ
r
− ∂rAϕ

Bϕ = Aθ

r
+ ∂rAθ

which show that both electric field and magnetic field might have formally
components along the θ and ϕ directions too. These expressions nevertheless show
that assumptions of radial fields such as E(r, t), and B(r, t) impose the following
conditions:

∂0Aθ = 0, Aϕ = 0,
Aθ

r
+ ∂rAθ = 0 (Aθ = C

r
)

Being the curl of a vector A, the magnetic field B is thus a solenoidal vector. It is
then usual to define the four-vector potential:

Aν = (A0, Ai) := (φ,A1, A2, A3), Aμ = ĝμνAν = (A0, Ai) (6.10)

= (φ,−A1,−A2,−A3)
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by using the metric of the flat Minkowskian spacetime M . Instead of the electric
intensity and the magnetic flux, the unknowns of the Maxwell’s equations are
now the four-potential vector (Aμ). As illustration, the simplest solution of The
Maxwell’s equation (6.2) is the electromagnetic field that corresponds to the field
generated by a static electric chargeQ, assumed to be at the origin of the space,

E = Q

4πε0

r
r3 , B = 0

in which r is the radial vector form the origin of the electric charge Q (static in a
flat space) to the pointM , and ε0 the electric permittivity of the vacuum flat space.
This elementary solution corresponds to the four-potential:

Aμ =
(
Q

4πε0

1

r
, 0, 0, 0

)

Remark 6.1 The vector product does not present any particular difficulty in a
three-dimensional Euclidean space E . Further considerations should be done when
working with a differentiable manifold. It is worth to remind the notion of ωn-
isomorphism e.g. Rakotomanana (2003) where the product of two vectors (∇̂ and A
respectively) is defined as a 2-form B whose the non zero components are such that:

B := ∇̂ × A = εijk
(
∂jAk

)
ei , Bi = εijk

(
∂jAk

)

in which εijk is the Civita alternating tensor.

εijk =
⎧
⎨

⎩

+1 if ijk = cyclic permutation of 123
−1 if ijk = anticyclic permutation of 123

0 if ijk = other situations

By using the metric tensor ĝαβ := Diag {+1,−1,−1,−1}, we observe that the sign
of both xj and Ak changes when the indices are lowered (covariant components).
Then the place of the indices does matter in the general case and we practically
obtain the components of the 2-form:

B1 = ∂2A3 − ∂3A2, B2 = ∂3A1 − ∂1A3, B3 = ∂1A2 − ∂2A1 (6.11)

in the basis
{
dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2

}
. These relations may be summa-

rized by the correspondence of magnetic variables:

B := Bjk dxj ∧ dxk and Bi := 1

2
εijk Bjk (6.12)
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and that of electric variables:

D := Djk dxj ∧ dxk and Di := 1

2
εijk Djk (6.13)

Relations (6.8) and (6.9) assess the name of D and B as “axial vector” (vector
product).

Remark 6.2 The presence of vector product conforms to the 2-form nature of the
electric displacement D, and the magnetic induction B. From physics insights, we
report in Table 6.1 the tensorial nature of each variable. By using the form notation,
we can write the electromagnetic strength or also Faraday tensor as a 2-form:

F = E1dx
1 ∧ dx0 + E2dx

2 ∧ dx0 + E3dx
3 ∧ dx0

+ B1dx2 ∧ dx3 + B2dx3 ∧ dx1 + B3dx1 ∧ dx2 (6.14)

from which we can easily check the correspondence of the componentsFμν with the
components of E and B. In sum the Faraday tensor is built by combining the electric
intensity field with the magnetic flux, where the 1-form Eμdxμ,μ = 0, 1, 2, 3, 4 is
adapted to fit as a 2-form Eμdx

0 ∧ dxμ, and the magnetic flux is calculated with
only space indices.

Remark 6.3 The four-vector potential Aμ defined by (6.10) is not unique since it
allows gauge transformations of the form Aμ + df in which f (xμ) is any scalar
function.

6.2.1.5 Electromagnetic Waves

For pointing out the existence of wave solutions of the Maxwell’s equations, let us
account for the relations (6.8) which relate the potential with the electromagnetic

Table 6.1 Electromagnetic variables and their tensor type

Variable Vector notation Form notation

Electric field intensity E 1-form : Ei dxi

Magnetic field intensity H 1-form : Hi dxi

Electric flux density D 2-form : Dij dxi ∧ dxj
Magnetic flux density B 2-form : Bij dxi ∧ dxj

The electric flux density is also called electric displacement. Due to the skew symmetry of 2-form,
the electric and magnetic flux densities are short-handed denoted D = D1 dx2 ∧ dx3 +D2 dx3 ∧
dx1 +D3 dx1 ∧ dx2, and B = B1 dx2 ∧ dx3 + B2 dx3 ∧ dx1 + B3 dx1 ∧ dx2, respectively



6.2 Electromagnetism in Minkowskian Vacuum 247

fields. The first pair of Maxwell’s equations becomes:

⎧
⎪⎨

⎪⎩

ε0∇̂ ·
(
−c∂0A− ∇̂φ

)
= 0

∇̂ ×
(

1

μ0
∇̂ ×A

)
− cε0∂0

(
−c∂0A− ∇̂φ

)
= 0

The potentials φ and A are still subject to gauge transformations. We worthily
choose the Lorenz gauge condition:

∇̂ ·A+ 1

c
∂0φ ≡ 0 (6.15)

The Lorenz gauge (6.15) is due to the Danish physicist Ludvig V. Lorenz to be
not confused with the Dutch physicist Hendrick A. Lorentz. Introducing the gauge
condition (6.15) into the previous first pair of Maxwell’s equations, and owing that
c2 := (ε0μ0)

−1, we obtain the following:

⎧
⎪⎨

⎪⎩

−ε0

[
c∂0

(
−1

c
∂0φ

)
+ ∇̂ · ∇̂φ

]
= 0

[
∇̂
(
∇̂ · A

)
− Δ̂A

]
+ ∂0∂0A+ 1

c
∂0

(
∇̂φ
)
= 0

owing the vectorial relations ∇̂ × (∇̂ × A) = ∇̂(∇̂ · A) − Δ̂A. We deduce the
two equations of electromagnetic wave propagation within the vacuum (symbol Δ̂
denotes here the three-dimensional space Laplacian operator):

{
∂2

0φ − Δ̂φ = 0
∂2

0A− Δ̂A = 0
−→

{
∂2
t φ − c2 Δ̂φ = 0
∂2
t A− c2 Δ̂A = 0

(6.16)

which turn into the classical electromagnetic wave equations within vacuum and
propagating with the same celerity c, speed of the light. For instance searching for
functions of the type φ(t, x) := Φ(x)T (t) and A(t, x) := A(x)T (t) leads to the
classical equations:

T (t) = A sin(ωt)+ B cos(ωt),

{
Δ̂Φ(x)− k2Φ(x) = 0
Δ̂A(x)− k2A(x) = 0

, k2 := ω2/c2

(6.17)

The last equation is the dispersion equation. Analogous solutions are obtained for
the potential A. We shortly review hereafter the four-dimensional formulation.

Remark 6.4 Electromagnetic wave propagation equations (6.16) have great interest
in the sense that they are locally decoupled. It allows us to use classical methods
of wave solutions in an arbitrary coordinate system for each of them, by accounting
for boundary conditions.
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6.2.1.6 Lorenz Gauge Invariance

The Maxwell’s equations in terms of in terms φ and A do not uniquely determine
the electric potential and magnetic potential. There is some flexibility in searching
for the potential functions. If φ0 and A0 are solutions, then so are the pair:

φ = φ0 + c∂0Λ, A = A0 − ∇̂Λ (6.18)

by checking:

E = −c∂0

(
A0 − ∇̂Λ

)
− ∇̂ (φ0 + c∂0Λ) , B = ∇̂ ×

(
A0 + ∇̂Λ

)
(6.19)

where Λ(xμ) is an arbitrary scalar function assumed to be of class C 2, which
is called gauge-transformation function. However, it should be reminded that the
gauge invariance is satisfied since we assumed:

−c∂0

(
∇̂Λ
)
− ∇̂ (c∂0Λ) = 0, and ∇̂ ×

(
∇̂Λ
)
= 0

Once a gauge (here Lorenz gauge) has been chosen, results obtained for potential
have no longer the flexibility as before the choice. These are gauge which fixes the
electromagnetic vector potential A. Such is the case for Minkowski and Riemann
spacetime, but maybe no longer for Riemann–Cartan spacetime in presence of non
vanishing torsion.

6.2.1.7 Energy Conservation of Electromagnetic Waves

The propagation of electromagnetic waves involves evolution of the energy in the
course of time. We remind in this paragraph the so-called Poynting’s theorem. Let
consider a continuum (spacetime or material continuum in the large) B where
electromagnetic fields are defined by the four vectors E, D, H and B which verify
the Maxwell’s equation (6.2). The continuum has a electric resistive behavior in
the sense that among the electromagnetic constitutive laws, it verifies Ohm’s law
stating that the current (motion of electric charge) through a conductor between two
points is directly proportional to the electric potential across the two points. At a
local point of view, where the material is assumed to be a continuum, Ohm’s law of
homogeneous and isotropic material holds (Kirchhoffs formulation):

J = γE (6.20)

where J is the current density at a given location of the material, E is the electric
field at that point, and γ is the electric conductivity.
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Theorem 6.1 (Poynting’s Theorem) Let consider the electric fields E, and D, and
the magnetic fields H, and B which verify the Maxwell’s equations, on a resistive
continuum B. Then:

∇ · (E×H)+ ∂

∂t

[
1

2
(D · E+ B ·H)

]
+ J · E = 0 (6.21)

For the terminology, each term is identified as:

1. S := E×H is called Poynting’s vector, quantifying the power leaving the material
point (infinitesimal volume surrounding the point)

2. We := 1
2 (D · E+ B ·H) is the electromagnetic energy density inside the

infinitesimal volume,
3. J ·E is the power lost to heat (Joule heating effect). The magnetic field can do no

work on the charges.

The Poynting’s theorem represents an energy conservation equation for the electro-
magnetic fields.

Proof Let start with by writing the Maxwell’s equation (6.2) and multiplied by fields
as follows:

{
H · ∇ × E = −H · ∂tB
E · ∇ ×H = E · ∂tD+ J · E

Owing the differential operators relationship:

∇ · (E×H) = H · ∇ × E− E · ∇ ×H

together with the constitutive laws of the continuum (6.3), we easily obtain:

∇ · (E×H)+ ∂

∂t

[
1

2
(ε0E · E+ μ0H ·H)

]
+ γE · E = 0

and then the more general form of the Poynting’s theorem for a continuum with
electric permittivity ε, and magnetic susceptibility μ. ��
Another formulation of the Poynting’s theorem would be:

− ∂W
e

∂t
= ∇ · S+ J · E (6.22)

and after integrating over a finite volume of the continuum B:

− ∂
∂t

∫

B
We dv +

∫

∂B
S · n da +

∫

B
J · E dv
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The (opposite of the) rate of the electromagnetic energyWe in a finite volume B is
equal to the sum of the flux of the Poynting vector S on the boundary ∂B and the
power lost into heat within B.

6.2.1.8 Four-Dimensional Formulation of Electromagnetic Waves

Let remind the convention for the coordinate system (x0 := ct, x1, x2, x3). The
system of equations (6.16) may be written in a synthetic formulation:

ĝαβ ∇̂α∇̂βAμ = 0, μ = 0, 1, 2, 3, ĝαβ = diag {+1,−1,−1,−1} (6.23)

where ĝαβ is the metric of the Minkowskian spacetime M , ∇̂ a four-dimensional
connection, and Aμ := (φ,A1, A2, A3) the electromagnetic four-potential. This
equation expresses all the Maxwell’s equations in one go, in a Lorentz covariant
form. It should be again stressed that Lorentz covariance means that it takes the
same form in one reference as it does in another (the relative motion being a Lorentz
transformation and particularly for boost (2.14)).

As for waves in elastic continuum, electromagnetic waves in vacuum spacetime
has the simplest solution of the four-dimensional wave equation is obtained by

assuming a plane wave as: Aμ = �e
{
Âμ exp (iκαxα)

}
where Âμ is the wave four-

amplitude, and κα is a null four-vector such that κα κα := 0. Again, the link with
the three dimensional spatial solution and temporal solution is then given by the
relationships:

⎧
⎨

⎩

ω

c
:=
√
κ0κ0 =

√
κiκi

k :=
(
κ1, κ2, κ3

) (6.24)

where ω and k are the usual frequency and the wave number vector respectively.
The light speed c is introduced since the time coordinate was defined as x0 := ct .
Remark 6.5 As for elastic waves, we have the dispersion equation. and the nullity
of the four-vector κακα ≡ 0 means that κα is a lightlike vector.

6.2.2 Covariant Formulation of Maxwell’s Equations

Maxwell’s equations in vacuum include both conservation laws and the constitutive
equations, namely the electric charge conservation, the magnetic flux conservation,
the Lorentz force on a charged particle and the linear isotropic and homogeneous
constitutive laws (defined by the electric permittivity and the magnetic permeability)
of the spacetime.
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6.2.2.1 Conservation and Constitutive Laws

Considering again the “axiom of general invariance” of Hilbert e.g. Brading and
Ryckman (2008), the electromagnetic Lagrangian LEM is assumed to depend
on the electromagnetic potential Aμ and their first derivatives. Accordingly, from
the electromagnetic fields (6.8) and the potential formulation (6.9) the invariant
formulation of electromagnetism theory in the Minkowskian spacetime M is
obtained by considering a skew symmetric tensor F to represent both the electric E
and magnetic induction B fields as the electromagnetic strength also called Faraday
tensor e.g. Ryder (2009). The components of this skew-symmetric tensor is obtained
by means of the definition (6.14):

Fμν := ∂μAν − ∂νAμ, Fμν =

⎡

⎢
⎢
⎣

0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

⎤

⎥
⎥
⎦ (6.25)

where the combined electromagnetic field (E,B) do not transform as three-vectors
but as the six components of the skew-symmetric tensor Fμν . We conform here to
the convention in e.g. Hehl (2008), Obukhov (2008), Hehl and Obukhov (2003).

Remark 6.6 We observe that the calculus of the components of the electromagnetic
tensor is conducted as follows and is coherent with the 2-form definition. For
instance, the componentF01 := ∂0A1−∂1A0 = −∂0A

1−∂1φ := E1 = −E1 where
we have introduced the contravariant components of the potential Aμ = (A0 =
A0 = φ,A1 = −A1, A

2 = −A2, A
3 = −A3). It should be reminded that the three-

dimensional potential vector is defined as A := (A1, A2, A2). For magnetic field,
on the one hand, we can write accordingly F12 := ∂1A2 − ∂2A1 := B3. On the
other hand, the three dimensional definition is given by B := ∇̂ × A which allows
us to calculate the third component as B3 = ∂1A2 − ∂2A1. We deduce B3 = F12.
The position of the index may be important for defining the electromagnetic tensor
because the contravariant components are not equal to covariant components in the
framework of Minkowski spacetime.

In this way the skew symmetric tensor Fμν is chosen as primal variables of the
theory. Let us now define the dual variable Hμν constructed from the displacement
and the magnetic field as follows (tensor H will be shortly related to Faraday tensor
by means of tangent tensor Ξ̂μνλσ := ε0 ĝ

μλĝνσ defining the constitutive properties
of the vacuum space, and it be will be extended to matter and to general relativity
spacetime hereafter) e.g. Obukhov (2008). Independently on the constitutive laws,
the classical electromagnetism theory considers the electromagnetic excitation as a
two-form Hμν :

H := −H1dx
1 ∧ dx0 −H2dx

2 ∧ dx0 −H3dx
3 ∧ dx0

+ D3dx1 ∧ dx2 +D1dx2 ∧ dx3 +D1dx2 ∧ dx3 (6.26)

in the same way as the definition of the electromagnetic strength (6.14).
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Remark 6.7 The variable we are interested in is in fact the dual variable Hμν in
order to be able to link it with the primal variable Fαβ . To have an intuitive point
of view and for better understanding, it is worth to consider the simplest linear
constitutive law:

Hμν = ε0
√−Detg gμαgνβFαβ

In the Minkowski vacuum spacetime, the calculus is straightforward by using the
relation ε0μ0 ≡ 1:

Hμν = ε0

⎡

⎢
⎢
⎣

0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 D1 D2 D3

−D1 0 H3 −H2

−D2 −H3 0 H1

−D3 H2 −H1 0

⎤

⎥
⎥
⎦

Now going back to arbitrary constitutive laws, we calculate the expression of the
dual variable as:

Hμν := 1

2
εμναβ Hαβ (6.27)

where εμναβ is the Levi-Civita tensor. From (6.26), we easily obtain the two
contravariant components as exactly as for the linear case:

Hμν =

⎡

⎢⎢
⎣

0 D1 D2 D3

−D1 0 H3 −H2

−D2 −H3 0 H1

−D3 H2 −H1 0

⎤

⎥⎥
⎦ (6.28)

owing again that ε0μ0 = 1 (the choice of coordinate system where x0 := ct allows
us to act as if c = 1) and the metric of the flat Minkowski spacetime holds gμν :=
{+1,−1,−1,−1}. It conforms to the linear constitutive law but it should again be
stressed that in the general case this is in fact considered as a definition of the dual
variable independently on the constitutive law.

Previous 3D equations (6.2) may be recast in four-dimensional covariant
Maxwell equations by using the spacetime connection as e.g. Ryder (2009)1:

{ ∇̂μHμν = J ν
∇̂μF∗μν = 0

(6.29)

where Hμν denotes the electromagnetic tensor including the electric displacement
field and the magnetic field, and F∗μν := (1/2)εμνκσFκσ is the dual of Fμν (εμνκσ

1Again, ∇̂μ denotes the four-dimensional connection in the Minkowski spacetime.
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being the Levi-Civita tensor ε0123 := +1). We remind the Civita tensor:

εμνκσ :=
⎧
⎨

⎩

+1 if (μνκσ) is an even permutation of (0123)
−1 if (μνκσ) is an odd permutation of (0123)
0 otherwise

(6.30)

Here we give some examples of components where the quadruplet (μ, ν, α, β)
represents the component εμναβ in order to highlight the indices permutation:

{
(0, 1, 2, 3) = 1, (1, 0, 2, 3) = −1, (1, 2, 0, 3) = 1, (1, 2, 3, 0) = −1
(0, 1, 2, 3) = 1, (0, 1, 3, 2) = −1, (0, 3, 1, 2) = 1, (3, 0, 1, 2) = −1

To highlight the role of the dual variable, covariant formulation of constitutive laws
may be introduced by means of the electromagnetic Lagrangian of the Minkowskian
spacetime:

L := −1

4
HμνFμν (6.31)

By introducing the definitions (6.25) and (6.28) the three-dimensional formulation
of the Lagrangian density function reduces to:

L = 1

2
(D · E− B ·H) (6.32)

For linear constitutive laws, the dual variable Hμν in the Lagrangian (6.31) defines
the constitutive laws of vacuum spacetime, in four-dimensional formulation,

Hμν := Ξ̂μνλσv Fλσ , Ξ̂μνλσv := (ε0/μ0)
1/2
√
−Detĝ

(
ĝμλĝνσ

)
(6.33)

owing that the Minkowskian spacetime of dimension n = 4 is endowed with
the metric ĝ. In the framework of 3D description, component by component,
the electromagnetic constitutive laws of vacuum space hold when considering the
theory of e.g. Plebanski (1960) adapted to Minkowskian spacetime, where ε0 :=
2 (ε0/μ0)

1/2:

⎧
⎨

⎩

D = ε0 E

B = μ0 H
�⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Di = −ε0
√−Detĝ
ĝ00

(
ĝij Ej − εijk ĝ0j Hk

)

Bi = −
√−Detĝ
ε0 ĝ00

(
ĝij Hj + εijk ĝ0j Ek

)

where ĝij is the space part of the Minkowski metric with i, j, k = 1, 2, 3, and
ε0μ0 := c−2 = 1. In the next subsection, we develop the complete constitutive laws
with respect to a moving reference frame with a relative velocity v.
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Remark 6.8 To avoid repetition of the procedure, we only apply the variation of the
Lagrangian when we will derive the field equations of gravitation-electromagnetic
interaction in the cases of Riemann and of Riemann–Cartan framework.

6.2.2.2 Lorentz Covariance and Rules of Variable Transformations

Maxwell’s 3D equations (6.2) are formulated in a fixed inertial system where the
spatial coordinates (xi) are defined in a space R3 and where t denotes the time
coordinate that an observer at rest reads on a clock attached to the space. The
covariance of the Maxwell’s 3D equations with respect to rotations, space reflection,
time reversal, and charge conjugation (modification of positive charge to negative
charge) may be checked by means of specific (non dynamic) transformations.
However, covariance under these groups of non time-dependent transformations
is unsatisfactory because the electromagnetic fields depend not only on the space
(xi) but also on the time t . A four-dimensional covariance analysis is worth for
instance with respect to Lorentz group of transformations (2.14). Basically, Lorentz
transformation relates two observers moving each other with constant relative
velocity v. Neither electric fields E and D, nor magnetic fields H, and B have simple
transformation behavior. We remind the Lorentz transformation matrix:

Λij = δij +
(γ − 1) vivj

|v|2 , Λ0
i = Λi0 = −γ vi , Λ0

0 = γ

where vi are three real (constant) parameters satisfying |v|2 := (v1)2 + (v2)2 +
(v3)2 < 1 (any particle has a velocity lower than the light speed which was set to
c = 1), and γ := (1− |v|2)−1/2. The point transformation is:

⎛

⎜
⎜
⎝

y0

y1

y2

y3

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎣

Λ0
0 Λ

0
1 Λ

0
2 Λ

0
3

Λ1
0 Λ

1
1 Λ

1
2 Λ

1
3

Λ2
0 Λ

2
1 Λ

2
2 Λ

2
3

Λ3
0 Λ

3
1 Λ

3
2 Λ

3
3

⎤

⎥
⎥
⎦

⎛

⎜
⎜
⎝

x0

x1

x2

x3

⎞

⎟
⎟
⎠ (6.34)

where each component of the transformationΛμν does not depend on the coordinate
xα. The transformation rules of variables are given by tensor rule in the general
case:

⎧
⎪⎨

⎪⎩

φ′(yμ) = φ(xμ)
A′μ(yα) = Λμν (xα) Aν(xα)

H ′μν(yα) = Λμα(xα) Λνβ(xα)H αβ(xα)

(6.35)

although Λμν does not depend on xα in our case. It is observed that the system of
Maxwell’s equations is Lorentz covariant if (and only if) the four-density current
Jμ(xα) is a four-vector field. To assess the transformation of the electromagnetic
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fields (E,H), and (D,B), it is worth to calculate from the tensorial rules:

F̃αβ = ΛμαΛνβFμν (6.36)

and also:

H̃ αβ = ΛαμΛβνH μν (6.37)

For example, we calculate the three components of the magnetic flux as:

⎧
⎨

⎩

B̃1 := F23 = Λμ2Λν3Fμν = γB1

−B̃2 := F13 = Λμ1Λν3Fμν = −γ
(
B2 + v1E3

)

B̃3 := F12 = Λμ1Λν2Fμν = γ
(
B3 − v1E2

)

for the case where only a motion along the direction e1 is considered. One-
dimensional calculus is straightforward. For the general transformation rules, we
have to use the formula F̃αβ = Λ

μ
αΛ

ν
βFμν with the Lorentz boost transforma-

tion (2.14) and write:

Ẽi := F0i = Λμ0 FμνΛ
ν
i

= Λ0
0F0jΛ

j

i +Λj0Fj0Λ
0
i +Λj0FjkΛ

k
i

= γ

(
δ
j
i +

γ − 1

‖v‖2 v
j vi

)
Ej − γ 2vj viEj − γ vj

(
δki +

γ − 1

‖v‖2

)
εjklB

l

Calculus for the other electric and magnetic fields (D,H,B) is analogously treated.
For the general motion with the vector v = viei (remind that the time is x0 :=
ct), we obtain the Lorentz transformations of the electromagnetic fields, for the
intensities:

⎧
⎪⎪⎨

⎪⎪⎩

Ẽ = γ
[
E+ v× B− γ − 1

γ

(
v
‖v‖ ⊗

v
‖v‖
)
E
]

H̃ = γ
[
H− v× D− γ − 1

γ

(
v
‖v‖ ⊗

v
‖v‖
)
H
] (6.38)

and for the fluxes:

⎧
⎪⎪⎨

⎪⎪⎩

D̃ = γ
[
D+ v×H− γ − 1

γ

(
v
‖v‖ ⊗

v
‖v‖
)
D
]

B̃ = γ
[
B− v× E− γ − 1

γ

(
v
‖v‖ ⊗

v
‖v‖
)
B
] (6.39)

Relations (6.38) and (6.39) are the Lorentz transformations rules of the three-
dimensional electromagnetic vectors e.g. Rousseaux (2008) where the medium is
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moving with relative velocity v each other. For a linear isotropic and homogeneous
medium, the constitutive laws, in the rest frame, are written as:

{
D = ε E
B = μ H

and

{
D̃ = ε Ẽ
B̃ = μ H̃

(6.40)

where it is essential to observe that the two material constants ε and μ remain the
same independently on the motion with velocity v of the medium. This merely
expresses the covariance of the Lagrangian (6.31) which models the electromagnetic
behavior of the medium:

L := −1

4
HμνFμν = −1

4
H̃μν F̃μν (6.41)

meaning that the quantityD·E−B·H ≡ D̃·Ẽ−B̃·H̃ is Lorentz invariant. A direct cal-
culus in e.g. Rousseaux (2008) allows us to deduce from the relations (6.38), (6.39)
and the Minkowski invariance conditions (6.40) the covariant constitutive laws:

{
D+ v×H = ε (E+ v× B)
B− v× E = μ (H− v× D)

(6.42)

relating the electric and magnetic fluxes to the electric and magnetic intensities.
They are called Minkowski constitutive laws of electromagnetism (6.42) which are
independent on the velocity of the medium in the framework of special relativistic
theory. They extend the constitutive laws in e.g. Plebanski (1960).

6.2.3 Maxwell’s Equations in Terms of Differential Forms

Numerous mathematical descriptions exist for writing the equations governing the
electromagnetic field. To extend the Maxwell’s equations to continuum media, it
is worth to rewrite the equations in terms of differential forms. We consider in
this subsection a Riemann continuum. In this way, we define the Hodge operator
∗ after considering again the Civita antisymmetric operator (6.30). The (numerical)
contravariant components are then: εμνκσ := |Det ĝ|−1 εμνκσ . Say the spacetime
M of dimension n = 4 endowed with the metric ĝ, the Hodge linear map
∗ : Λr=2 → Λn−r=2 is the action defined by as follows.2

F∗μν := (1/2)
√
|Detĝ|εμνκσ Fκσ (6.43)

2Hodge star operator The Hodge star operator is the unique linear map on a semi-Riemannian
manifold, say M , from r-forms to n − r-forms defined by: % : Ωr(M ) → Ωn−r (M ), such that
for all (ω, ω′) ∈ Ωr(M ), we have ω ∧ ω∗′ := 〈ω,ω′〉 where 〈, 〉 is an interior product on M e.g.
Nakahara (1996).
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We then obtain the dual of the Faraday tensor:

F∗μν =

⎡

⎢
⎢
⎣

0 B1 B2 B3

−B1 0 −E3 E2

−B2 E3 0 −E1

−B3 −E2 E1 0

⎤

⎥
⎥
⎦

The derivation of differential forms formulation of Maxwell’s equations by means
of these 2-forms merges into the Gauss-Ampère law and the Gauss-Faraday law
respectively e.g. Plebanski (1960), Prasanna (1975a), Ryder (2009):

dH = J, (dF∗)∗ = 0 (6.44)

Equation (6.44) are equivalent to (6.29), and are equivalent to (6.2) with Jμ =
(ρ, J 1, J 2, J 3). For a given media, these equations are not complete since the
constitutive laws between fluxes and fields should be proposed D(E,H) and
B(E,H). Indeed, it is also reminded that the covariant and the 2-forms formulation
are independent on the constitutive laws. In presence of interfaces between various
media and of boundaries, the solving of local equations requires the covariant jump
conditions e.g. Itin (2012).

Remark 6.9 The differential forms Maxwell equation (6.44) constitute explicit
covariant formulation without requiring neither a metric nor connection, it is
thus possible to use them for deriving the Maxwell equations within a manifold
with Riemannian metric gμν(xλ) e.g. Itin (2012), or post-Riemannian spacetime
and continua e.g. Puntigam et al. (1997). This is an important starting point for
investigating the propagation of electromagnetic waves within matter and / or with
gravitation field. Equation (6.44) are typical examples of the Yang-Mills theory e.g.
Cho (1976a).

Remark 6.10 The invariant formulation of Maxwell equation (6.44) are mathemat-
ically appealing and look synthetic and simple. It should nevertheless observed
that they relate electromagnetic variables which are “mixed” in the sense of
thermomechanics theory (distinction of primal and dual variables). Indeed, each
of the two 2-forms F (6.25, and H (6.28) representing the electromagnetic fields
are composed of intensity field and flux density: (E,B) for F, and (D,H) for
H. Physically, this should be handled with cautious when dealing with material
constitutive laws.

Remark 6.11 A more complex continuum (spacetime or continuum matter) may
be generalized from a geometry point of view. As reminded by e.g. Smalley and
Krisch (1992), there is no a priori condition that the Faraday tensor field Fμν be a
two-form. Another way would be the definition of the Faraday tensor as the skew-
symmetric part of the gradient∇μAν where the connection is affine and may be non
symmetric.
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6.3 Electromagnetism in Curved Continuum

Various phenomenae in the domain of propagation may have effects on electro-
magnetic waves: the presence of gravitational field, the presence of media, and the
motion of this media. The constitutive properties of the vacuum spacetime (defined
by Eq. (6.33)) should be adapted accordingly. Indeed, these constitutive laws are
classically identified in a laboratory frame of reference which are assumed to be
homogeneous and isotropic, by the effects of electric and magnetic fields on various
charges and particles, or systems. They should be worthily changed to account for
either the modification of the spacetime environment in presence of gravity for
instance, or the propagation of electromagnetic fields within matter.

It is worth to remind the vectorial approach to define electromagnetic constitutive
laws, say the electrodynamics in matter. There are two types of material reactions
for electric field E (e.g. Kovetz 2000): (a) conductors have electric charges that are
free to move, (b) dielectrics do not have such free electric charges. But when electric
field is applied on matter, positively charge nucleus are pushed in the direction of
E, and negatively charge in the opposite direction. This polarization is described
by a vector field P = ε0χeE where χe > 0 is the electric susceptibility constant.
Ferroelectrics are material for which P �= 0 even in the absence of an electric field.
The electric displacement then holds in a general form:

D = ε0E+ P = ε E

Magnetic fields M are created by currents. Current loops with their associated dipole
moments exist in materials by two mechanisms: (a) electrons orbiting the nucleus
carry angular momentum and act as magnetic dipole moments; (b) electrons carry
intrinsic spin, which is a pure quantum effect, and contribute to the magnetic dipole
moment: M = 1

μ0

χm
1+χm B and:

H := 1

μ0
B−M ⇐⇒ B = μ0H+M = μH

where χm is the magnetic susceptibility. Diamagnetic matters have −1 < χm < 0,
whereas paramagnetic matters 0 < χm. Ferromagnetic matters (or magnets) may
have M �= 0 even if B = 0. For diamagnets and paramagnets we can write B =MH
accordingly where M is the magnetic permeability tensor.

Remark 6.12 Relations D = εE and B = μH are the constitutive equations of the
electromagnetic matter in a particular reference frame, where ε andμ are the electric
and magnetic parameters of the matter. Covariant constitutive equations with respect
to an arbitrary reference frame are given by (6.42). For this particular case, it suffices
to replace ε0 and μ0 by ε and μ.
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6.3.1 Maxwell’s Equations and Constitutive Laws

Maxwell’s equations which are the conservation laws, independent of the continuum
where electromagnetic waves propagate, are reformulated and constitutive laws are
explicitly derived.

6.3.1.1 Maxwell’s Equations

Let a continuum B which may be not a Minkowski spacetime M , each of
continuum has its proper metric and connection. We consider the propagation of
electromagnetic field within the continuum B. The continuum B may be also
considered as an Einstein or Einstein–Cartan spacetime with gravitation. However in
this subsection the symbol ∇ denotes the three-dimensional connection in the space
and ∇ the Levi-Civita four-dimensional connection. The same form as for the basic
equations (6.2) and (6.29) governing the electromagnetic waves hold within matter
or within a spacetime with gravitation written in a source-free from e.g. Fernandez-
Nunez and Bulashenko (2016):

⎧
⎪⎪⎨

⎪⎪⎩

∇ · D = 0
∇ ×H− c ∂0D = 0

∇ · B = 0
∇ × E+ c ∂0B = 0

or

{ ∇μHμν = 0
∇μF∗μν = 0

(6.45)

where the connection ∇ is referred to continuum matter B than to the spacetime
M . In the framework of Einstein gravitation (curved but torsionless), the extension
of Minkowski Faraday tensor (6.25) is determined from a four-vector potential by
means of the Riemannian connection (torsionless and metric compatible):

Fμν := ∇μAν −∇νAμ = ∂μAν − ∂νAμ (6.46)

As a first example, we consider a field of gravitation characterized by a non
Minkowskian metric gαβ(xμ) e.g. Leonhardt and Philbin (2006), Fernandez-Nunez
and Bulashenko (2016). By analogy to the electromagnetic waves in vacuum, we
start with the field of 2-form (same shape of contravariant components as in the
vacuum):

Hμν =

⎡

⎢
⎢
⎣

0 D1 D2 D3

−D1 0 H3 −H2

−D2 −H3 0 H1

−D3 H2 −H1 0

⎤

⎥
⎥
⎦

where the “physical” variables are the electric flux (displacement) and the magnetic
field.
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From this quantity, we use hereafter the Riemannian metric gμν , as for relativistic
gravitation theory, instead of Minkowskian ĝμν one, the associated Faraday tensor
takes the form of (inversion): Fμν = (ε0

√−Detg)−1gμλgνσ Hλσ .

6.3.1.2 Constitutive Equations in Presence of Rotating Body

In presence of spacetime or continuum curvature, generated by non uniform metric
tensor, electrostatics and magnetostatics are coupled each other. By analogy to
the vacuum Minkowski spacetime, we may write the component by component
electromagnetic constitutive laws in three-dimensional formulation e.g. Leonhardt
and Philbin (2006), Plebanski (1960):

⎧
⎪⎪⎨

⎪⎪⎩

Di = −ε0
√−Detg
g00

(
gij Ej − εijk g0j Hk

)

Bi = −
√−Detg
ε0g00

(
gij Hj + εijk g0j Ek

)

where the components of the metric tensor gαβ and its inverse gαβ are a priori
given, or more generally calculated from the presence of massive bodies in the case
of relativistic gravitation. They depend on the point event xμ. We will consider
in the next section the mutual interaction of electromagnetism and gravitation by
using a variational procedure. The same method can be used to define the inverse of
constitutive laws.

For linear matter, the above electromagnetic constitutive laws with respect to a
rest frame take the general form of (see Plebanski 1960):

D = Ξ E− Γ ×H, B =M H+ Γ × E (6.47)

where Ξ and M are respectively the electric permittivity and the magnetic per-
meability tensors. The time-dependent vector Γ defines the coupling between the
electric and magnetic fields (see (6.42)) for the case of moving frame.

As illustration, by considering a set of material points of total massM :=∑mα
with a constant angular momentum J := ∑GMα × vα (G is the mass center of
material point mα at position Mα) and at large distance r from the set of material
points, the approximate gravitational metric differs from the Minkowskian one to
give the so-called Landau’s formulae e.g. Hartle and Sharp (1967), Landau and
Lifchitz (1971) (here with the convention ĝαβ := diag = {+1,−1,−1,−1}):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g00 = 1− 2m

r
� 1− 2m

r
+O

(
1

r2

)

gij = −δij
(

1− 2m

r

)
� −δij

(
1+ 2m

r

)
+ O

(
1
r2

)

g0i = −2m

r3 εijkx
j jk = gi0 � −2m

r3 εijkx
j jk +O

(
1

r3

)
(6.48)
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in which we have defined the Schwarzschild radiusm and the adimensional angular
momentum:

m := GM

c2
, j k := J k

Mc
τ (6.49)

The gravitational field engendered by a rotating massive body at the origin is thus
characterized by the approximated metric (6.48) which merged into a Minkowski
spacetime at very large distance. The propagation of electromagnetic waves is influ-
enced by the gravitation only at the vicinity of the massive body. The quantitative
role of the angular momentum is not of the same order as that of the mass m.
It should be however reminded that (6.48) are not the exact external solutions of
Einstein field equation due to rotating body. They are only approximated conversely
to Kerr solutions e.g. Ryder (2009).

Remark 6.13 It is worth to mention that the off-diagonal terms g0i expresses the
time averages of the original components g0i over the period of motion τ of the
matter (Plebanski 1960). Otherway, the physical dimension of the original off-
diagonal terms in Eq. (6.49) is [1/s].
Remark 6.14 Physically, constitutive laws express the electromagnetic flux densi-
ties D (electric displacement) and B (magnetic induction) in terms of electromag-
netic field intensities E (electric field) and H (magnetic field), see Table 6.1 for
classification.

The 3D constitutive equations (6.47) may be written as four-dimensional constitu-
tive laws:

{
Dα = Ξαβ Eβ + εαβγ ΓβHγ
Bα = M

αβ Hβ − εαβγ ΓβEγ (6.50)

where εαβγ is the Levi-Civita alternating tensor. Plebanski calculated the equivalent
electric permittivity and magnetic permeability induced by a metric-gravitational
field gαβ and determined in Plebanski (1960) as:

Ξαβ =M
αβ = −√Det(−g) g

αβ

g00
, Γα = g0α

g00
(6.51)

Remark 6.15 We observed that the Plebanski form for electromagnetic constitutive
equations (6.50) conform more the way of formulating constitutive laws in contin-
uum mechanics models of matter where fluxes D and B (i.e. stress for mechanics)
are expressed in terms of intensities E and H (i.e. strain for mechanics).
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6.3.1.3 Electric Three-Dimensional Wave Equations

For the static spacetime metric, as Schwarzschild metric case, vector Γ vanishes.
If we consider a monochromatic wave (sufficiently narrow bandwidth frequency),
the combination of the Maxwell’s equations and the constitutive laws (where Γ is
assumed to be null) leads to the time-harmonic electromagnetic wave propagation
e.g. Fernandez-Nunez and Bulashenko (2016):

∇ ×
[
M
−1 (∇ × E

)]− ω2 Ξ E = 0 (6.52)

where the connection ∇ represents the three-dimensional connection of the space.
Propagation of electromagnetic waves in continuum is also modified as the

motion of the continuum itself engenders effective gravitational field e.g. Leonhardt
and Piwnicki (2000). For instance, optical effects of moving media have been known
as earlier as the work of Fresnel in 1818. In addition to the drag effects and as for
non-Euclidean metrics such as Schwarzschild metric, the continuum motion is a
source of bending when the four-dimensional aspect of the spacetime is considered.
Gordon in 1920 noticed that moving media induces effective spacetime non-
Minkowskian metric influencing electromagnetic fields e.g. Leonhardt and Philbin
(2006). The constitutive relations of vacuum spacetime are no longer valid. In
Riemannian manifold (case of electromagnetic waves within Einstein gravitational
fields), the Maxwell’s equations within matter remain the same as (6.44) e.g. Frankel
(1997), Puntigam et al. (1997): dH = J, and (dF∗)∗ = 0 after substituting the
appropriate conservation laws, for instance (6.50). It can thus be observed that
electromagnetism within matter modelled by Riemannian manifold is also described
by equations of Yang-Mills theory.

6.3.2 Variational Method and Covariant Maxwell’s Equations

We have seen that the vacuum constitutive laws introduce both the metric
(Minkowski) and physical properties as electric permittivity ε0 and magnetic
permeability μ0 with the homogeneity and isotropy assumption of the space and
time.

6.3.2.1 Lagrangian and Constitutive Laws

For real-world materials and media, the constitutive relations are not linear at all.
Physical parameter may depend on the location. In a general manner, constitutive
equations relate the fluxes D and B en terms of fields E and H. Usual texts of
electromagnetic theory may mixed variables. Linear electromagnetic constitutive
laws for spacetime and for matter may be integrated within a quadratic Lagrangian
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function and can be written as:

L = −1

4
ΞμναβFμνFαβ (6.53)

where the tensor Ξμναβ(gλγ , uλ, · · · ) characterizes the electromagnetic properties
of the media.

Some particular materials may be considered. Physically, a polarizable and
magnetizable continuum matter may be characterized by polarization P and magne-
tization M. The three dimensional “physics” constitutive laws hold:

{
D = ε E+ P
B = μ (H+M)

(6.54)

where the polarization P and magnetization M are not vectors but are rather the
components of a two-forms in the four-dimensional description:

Mμν :=

⎡

⎢
⎢
⎣

0 P 1 P 2 P 3

−P 1 0 −M3 M2

−P 2 M3 0 −M1

−P 3 −M2 M1 0

⎤

⎥
⎥
⎦ (6.55)

From (6.54), the four-dimensional constitutive laws thus take the form of e.g.
Obukhov (2008):

Hμν = Hμν
m +Mμν (6.56)

with:

Hμν
m = ε (gμαgνβ)Fαβ, Mμν = Ξμναβem Fαβ (6.57)

Tensor Hμν
m is the excitation field in the matter by analogy to the vacuum equation

(6.33). The electromagnetic susceptibility tensorΞμναβem defines the properties of the
matter, and it also describes both the electric polarization and the magnetization of
the matter when it is submitted to an electromagnetic field.

6.3.2.2 Gravito-Electromagnetism in Einstein Spacetime

For the sake of the simplicity, let us consider the simplest example of action for free
electromagnetic field without sources and occurring within a Riemann spacetime
(curved):

S :=
∫

M
Lωn with L := −1

4
Fμν Fμν + 1

2χ
R (6.58)
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The Faraday tensor (here the electromagnetic field is minimally coupled to the
gravitation in a Einstein spacetime via Levi-Civita connection) and the scalar
curvature are defined by the relationships3:

Fμν := ∇μAν − ∇νAμ, R := gμν�μν (6.59)

where the Faraday tensor Fμν is calculated with the connection with zero torsion.
First, the Lagrangian variation of the action (6.58) allows us to obtain the expres-
sion:

ΔS =
∫

M

{
−1

2
FμνΔFμν + 1

4
Fμν

(
gμλFρν + Fμρgλν

)
Δgλρ

+ 1

2χ

(
�λρ − R

2
gλρ
)
Δgλρ + 1

8
Fμν Fμν g

λρΔgλρ

+ 1

2χ
gμν

[
∇λ
(
ΔΓ

λ

μν

)
−∇μ

(
ΔΓ

λ

λν

)]}
ωn

In the variational of the previous Lagrangian (6.58), it is worth to remind that
the independent variations of the metric and the four-potential vector should be
performed. The Lagrangian variation of the Faraday tensor takes the form of:

ΔFμν = ∇μ(ΔAν)−∇ν(ΔAμ) (6.60)

This relation is obtained by directly writing:

ΔFμν = Δ
(
∂μAν − Γ ρμνAρ

)
−Δ

(
∂νAμ − Γ ρνμAρ

)

=
(
∂μΔAν − Γ ρμνΔAρ −ΔΓ ρμνAρ

)
−
(
∂νΔAμ − Γ ρνμΔAρ −ΔΓ ρνμAρ

)

accounting for that the variation of the geometric structure, say ΔΓ
ρ

μν , induces
a variation of the field ΔFμν . Second, the two systems of conservation laws
associated to the unknown primal variables (say the four-vector potential Aμ,
and the Riemannian metric gμν ) are derived by varying the Lagrangian along
the Lie-derivative variations LξAμ, and Lξ gμν . Shifting the divergence terms at
the boundary of the continuum and assuming a zero divergence at this boundary
allow us to obtain the conservation laws governing the gravitation interacting with

3In the remaining part of this subsection the symbol ∇ represents the Levi-Civita connection
associated to the nonuniform metric tensor of the continuum manifold.
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electromagnetism. We can rearrange the Lagrangian variation of the action to give:

ΔS =
∫

M
∇νFμν ΔAμ ωn +

∫

M

[
1

2χ

(

�λρ − R

2
gλρ

)

+ 1

8
FμνFμν g

λρ + Fμν

4

(
gμλFρν + Fμρgλν

)
]
Δgλρ ωn (6.61)

owing that the Faraday tensor is in fine expressed in terms of the potential Aμ
by means of Eq. (6.59). To ensure the existence of electromagnetic field. Due to
the arbitrariness of the metric and potential variations, we obtain the classical (and
covariant) Einstein–Maxwell’s equations:

⎧
⎪⎨

⎪⎩

∇νFμν = 0

1

2χ

(

�λρ − R

2
gλρ

)

+ 1

8
FμνFμν g

λρ + Fμν

4

(
gμλFρν + Fμρgλν

) = 0

(6.62)

where the first equation is the covariant Maxwell’s equations in a Riemann contin-
uum, such as curved spacetime or curved continuum matter. The second equation
governs the interaction of the electromagnetism to the gravitation. The unknowns
in first term of the second equation are the spacetime metric. The electromagnetic
source (including both the second and the third terms) in the second equation
constitutes the energy-momentum tensor. They influence the gravitation field and
vice versa the metric field has also some influence on the electromagnetic field via
the Levi-Civita covariant derivative ∇.

6.3.2.3 Electromagnetic Four-Dimensional Wave Equations

The Maxwell’s equation (6.62) (first row) is used to analyze the electromagnetic
wave propagation within a Riemann continuum. Let consider a spacetime M
endowed with a metric gαβ and a Levi-Civita connection Γ

γ

αβ . The first equation
may be re-written as follows:

∇νFμν = ∇ν
(
gμαgανFαβ

)

= ∇ν
[
gμα∇αAν − gνβ∇βAμ

]

= gμα
[
∇α∇νAν +�νναγAγ

]
− gνβ∇ν∇βAμ = 0

where we have used the Schouten’s relations (5.21) with a zero torsion. The
Maxwell’s equations include a classical wave part, a divergence term, and the
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contribution of the Ricci curvature of the continuum:

− gνβ∇ν∇βAμ + gμα∇α∇νAν + gμα�αγAγ = 0 (6.63)

The first term expresses a D’Alembertian operator. The second term may be dropped
if we assume a null divergence ∇νAν = 0 as a gauge condition (Lorenz gauge).
We then obtain the electromagnetic wave propagation equation within curved
continuum:

− gνβ∇ν∇βAμ + gμα�αγ Aγ = 0 (6.64)

in which we notice the direct influence of the gravitation (represented by the
Ricci curvature) on the electromagnetic wave propagation. In the following we will
consider an extension of Eq. (6.64) in the framework of Riemann–Cartan continuum
(also called Einstein–Cartan gravitation).

Let now consider the dispersion equation. Remind that in a covariant formulation,
space and time are merged into a spacetime where each event is defined by four-
coordinate xμ = (x0 := ct, x1, x2, x3). The normalization with c allows us to work
with only space coordinate. Similarly, the spectral domain parameters are combined
into a covariant vector κμ = (ω/c, k1, k2, k3) = (ω/c,−k1,−k2, k3). The phase is
thus written compactly as a inner product: κμxμ = ωt − k1x

1 − k2x
2 − k3x

3 =
ωt − k · x. Searching solutions as plane wave Aμ = Âμeκσ x

σ
leads to the vector

equation of electromagnetic waves within a curved spacetime as4:

[−δμν gσβκσ κβ + gμσ κσ κν + gμα�αν
]
Aν = 0

owing the derivative formula∇β
(
Âμeκσ x

σ
)
= κβÂμeκσ xσ and the other derivatives

take analogous formulation. Non zero four-vector Aν exists if and only if the
determinant of the matrix vanishes. This permits to deduce the dispersion equation
within a curved spacetime:

Det
[−δμν gσβκσ κβ + gμσ κσ κν + gμα�αν

] = 0 (6.65)

For physical interpretation in the framework of three-dimensional formulation,
dispersion relations reduce to algebraic equations that merely relate the wave
frequency ω and the wave number vector k.

4Care should be taken since suggesting the coordinate dependence eκσ x
σ

implicitly assumes that
time and space are separated (method of variable separation). The covariance of the formulation
is expected to allow us to derive the dispersion equation in any inertial frame in the framework of
special relativity.
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6.3.2.4 Field Equations and Conservation Laws

The second row of system (6.62) is the field equation which extends the Einstein
equation for vacuum spacetime, where the term represents the energy momentum
analogous of the Maxwell energy-momentum for the space part, and with nonsym-
metric property when considering the timelike part:

T λρ := −1

4
FμνFμν g

λρ − Fμν

2

(
gμλFρν + Fμρgλν

)
(6.66)

It is the Minkowski energy-momentum tensor due to electromagnetic field. It
modifies the gravitational field as source whereas the spacetime modifies the
electromagnetic field according to (6.64). The temporal component of the energy-
momentum (6.66) holds:

T 00 = 1

2

(
DiEi + BiHi

)
(6.67)

which is exactly the electromagnetic energy density T 00 = (1/2) (D · E+ B ·H) :=
E in a three-dimensional formulation. By introducing the electromagnetic
tensors (6.25) and (6.28) into the expression of the energy-momentum tensor,
we have the following particular cases:

⎧
⎨

⎩

T 01 = E2H3 − E3H2

T 02 = E3H1 − E1H3

T 03 = E1H2 − E2H1

,

⎧
⎨

⎩

T 10 = D2B3 −D3B2

T 20 = D3B1 −D1B3

T 30 = D1B2 −D2B1

showing again that the
{
T 01, T 02, T 03

}
are the components of the vector E ×

H, whereas
{
T 10, T 20, T 30

}
are the components of the vector D × B, also

called Minkowski momentum density e.g. Milonni and Boyd (2010), in the three-
dimensional formulation. This highlights that the Minkowski tensor T μν is not
symmetric when considering the time index 0. It is worth to express the energy
momentum as:

T
μν
M =

[
E E×H

D× B TM

]
(6.68)

where E is the energy, and TM is the Maxwell tensor with contravariant components
T ij . The (nonsymmetric) energy-momentum such defined is called Minkowski
energy momentum.

Remark 6.16 The Poynting vector S := E × H (originally discovered by JH
Poynting in 1884 and denoted this form) represents the rate of energy in the i-
direction as mentioned in the formulation T 0i . The definition of the Poynting vector
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as the vector product of the electric field E with the magnetic field H is valid in a
continuum such as the spacetime or a continuum matter.

Remark 6.17 Due to the nonsymmetry of the Minkowski energy-momentum, other
tensors have been considered in the past, the most known is the symmetric Abraham
energy momentum tensor which can be written as:

T
μν
A =

[
E E×H

E×H TM

]
(6.69)

T
μν
M and T μνA are by far the most cited and considered. They have been also

compared and constitute a source of controversial debate since 100 of years. It is
not yet closed. Among the numerous results for supporting the choice of the one or
the other, experimental measurements of radiation pressure of light on matter have
shown the complementarity of these two energy-momenta, see for instance (Griffiths
2011) for mainly macroscopic electromagnetism, and Milonni and Boyd (2010) for
physical interpretations of the two energy-momentum on the radiation pressure of
light on a dielectric. Radiation pressure is the mechanical pressure exerted on a
surface in the direction of propagation by an incident electromagnetic radiation.

For completeness, the spatial components of the Maxwell energy-momentum
take the form of for diagonal contributions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

T 11 = −1

2

(
+D1E1 −D2E2 −D3E3

)
− 1

2

(
+B1H1 − B2H2 − B3H3

)

T 22 = −1

2

(
−D1E1 +D2E2 −D3E3

)
− 1

2

(
−B1H1 + B2H2 − B3H3

)

T 33 = −1

2

(
−D1E1 −D2E2 +D3E3

)
− 1

2

(
−B1H1 − B2H2 + B3H3

)

For off-diagonal spatial terms we obtain (remind that T μν is symmetric):

⎧
⎨

⎩

T 12 = − (D2E1 + B2H1
)

T 23 = − (D3E2 + B3H2
)

T 31 = − (D1E3 + B1H3
)

By considering the Eulerian variation (Lie derivative variation Lξ gλρ) on the
Riemann continuum we obtain the conservation equation as follows:

∇ρ
(

�λρ − R

2
gλρ

)

= 0 �⇒ ∇ρT λρ = 0

since we have seen that the covariant derivative of the Einstein tensor vanishes by
using the Bianchi relationships (see Eq. (4.73)).

It is now essential to introduce the energy-momentum tensor in the conservation
laws. Notice that the spatial part of the Minkowski energy-momentum tensor is also
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called Maxwell stress tensor. The conservation laws take the form of:
{∇ρT 0ρ = ∇0T

00 +∇iT 0i

∇ρT iρ = ∇0T
i0 +∇j T ij (6.70)

We recognize that the first row reduces to the Poynting’s theorem (6.21) when
considering an isotropic and homogeneous continuum, where the Joule effect is not
present because we did not introduce it in the Lagrangian function L . The second
row represents the “force equilibrium” where the time derivative of the Poynting’s
vector compensate the divergence of the Maxwell’s stress tensor.

Going back to the system of equation (6.62), it is interesting to re-formulate the
second row to give:

1

χ

(

�λρ − R

2
gλρ

)

= T λρM = 1

2

(
T
λρ
M + T ρλM

)
+ 1

2

(
T
λρ
M − T ρλM

)
(6.71)

where the left-hand side of the equation is symmetric whereas the right-hand side is
not. This induces that the skew-symmetric part of the Minkowski energy-momentum
T
λρ
M does not contribute to bend the spacetime and then has no influence on the

gravitation field. In a vacuum Minkowskian spacetime remind however that ε0μ0 =
c2 = 1, for we adopt a coordinate system (x0 := ct, x1, x2, x3). In such a case the
two energy-momenta merge and the Abraham energy-momentum coincides with
the Minkowski energy-momentum, problems only arise when electromagnetism
interact with continuum matter.

Starting from Eq. (6.71) which relates the electromagnetic fields T λρ as source
of the bending of the spacetime, we can multiply this equation by the covariant
components of the metric gλρ to obtain without difficulty the Ricci curvature and
then the curvature of the spacetime:

− R = T := gλρT λρM = −2χFλρF
λρ = χ (D · E− B ·H) (6.72)

which is exactly χ times twice of the electromagnetic part of the Lagrangian
function.

Remark 6.18 The debate of physicists and mathematicians about the choice of
energy-momentum draw back to the beginning of relativistic theory more than 100
years ago. At least two factors may constitute the reasons of its revival nowadays: the
increasing role of optics in modern communication technology, and the legitimate
seek of consistent physics theory. Previous studies suggest that the two energy-
momenta (6.68) and (6.69) are in fact correct but in different circumstances e.g.
Milonni and Boyd (2010). They have their own physical interpretations. Anyway,
the non equilibrium of the skew-symmetric part of the Minkowski energy momen-
tum (6.68) may be source of indeterminacy of solutions of the field equations,
namely for the angular momentum.

It is reminded that the Lorentz force and the four-dimensional form of conser-
vation laws can be directly deduced from the Maxwell’s equations. For the sake of
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the completeness, we report here below the sketch of proof. Let us start with the
Maxwell’s equation (6.2) by multiplying the lines (1) and (3) respectively by E and
by H (both 1-forms), and by cross-multiplying the lines (2) and (4) by B and D
respectively:

⎧
⎪⎪⎨

⎪⎪⎩

(∇̂ · D)E = ρE
B× (∇̂ ×H− c ∂0D) = B× J

(∇̂ · B)H = 0
D× (∇̂ × E+ c ∂0B) = 0

(6.73)

The sum of the first and third lines minus the second and the last rows gives a
necessary condition in which we remark the Minkowski energy momentum:

FE + FM − c∂0 (D× B) = ρE+ J× B

where the right-hand side of the equation is merely the so-called Lorentz force, and
where we have defined the electric and magnetic internal forces:

{
FE := (∇̂ · D)E− D× (∇̂ × E)
FM := (∇̂ · B)H− B× (∇̂ ×H)

(6.74)

We remind some obvious vectorial relationships (proof may be easily derived with
component form) (same relations may be established with B and H):

⎧
⎨

⎩

∇̂(D · E) = (∇̂D)E+ (∇̂E)D
∇̂ · (E⊗ D) = (∇̂D)E+ ∇̂DE
D× (∇̂ × E) = (∇̂E)D− ∇̂DE

We introduce these relations into the previous equation. We recover the following
formulas for the internal electromagnetic forces in the vectorial form:

⎧
⎪⎪⎨

⎪⎪⎩

FE := ∇̂ ·
(
E⊗D− 1

2
(E · D) I

)
− 1

2

[
(∇̂D)E− (∇̂E)D

]

FM := ∇̂ ·
(
H⊗ B− 1

2
(H · B) I

)
− 1

2

[
(∇̂B)H− (∇̂H)B

] (6.75)

Now, we define the three-dimensional spatial part of the (non-symmetric) Maxwell
stress and the Maxwell force density respectively as:

⎧
⎪⎪⎨

⎪⎪⎩

TMaxwell := E⊗ D+H⊗ B− 1

2
(E · D+H · B)

fMaxwell := ρE+ J× B
︸ ︷︷ ︸
Lorentz force

+1

2

[
(∇̂D)E− (∇̂E)D

]
+ 1

2

[
(∇̂B)H− (∇̂H)B

]

(6.76)
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These are the three-dimensional version of the four-dimensional electromagnetic
Minkowski energy momentum (6.68). The total Maxwell force density fMaxwell
includes the so-called Lorentz force and the Helmholtz’s force. The Lorentz
force ρE + J × B is the total force exerted by the electromagnetic field on the
material continuum. In sum, we can deduce from the Maxwell’s equations the
momentum balance equation and the continuity equation. Indeed, by considering
the quantities (6.75) and (6.76), we obtain:

∇̂ · TMaxwell = fMaxwell + c∂0 (D× B) (6.77)

When the medium is homogeneous and the electric permittivity and the magnetic
susceptibility are uniform, the Helmholtz’s force is equal to zero.

Remark 6.19 It should be stressed again that the Lorentz force is not an a priori
constitutive law since it is expressed only in terms of electromagnetic external field
where the charged body is in immersion. It is rather deduced from non homogeneous
Maxwell’s equations. However, it should be remarked that the Lorentz force remains
an approximation for small charges and generated currents which allows us to
neglect the self-interaction.

6.4 Electromagnetism in Curved Continuum with Torsion

Analysis of electromagnetic fields in presence of extremely massive gravitation
remains a relevant topic in relativistic astrophysics. Propagation of electromagnetic
waves governed by Maxwell’s equation (6.44) within a curved spacetime constitutes
a fundamental basis for studying signals received from neutron stars and black holes
to name but a few in astrophysics. Other methods consist in measuring the signal due
to gravitational waves. It is now admitted that the influence of the non-Minkowskian
metric of the curved spacetime is much stronger on the electromagnetic field
Fμν(x

α) than the influence of this field on the bending of the spacetime M . In this
section we consider the gravitation electromagnetism interaction within a Riemann–
Cartan continuum endowed with metric gαβ(xμ) and connection Γ γαβ(x

μ).

6.4.1 Electromagnetic Strength (Faraday Tensor)

First, we remind that interaction of Einstein gravitation and electromagnetism was
considered in a curved but torsionless Riemannian spacetime e.g. Fernandez-Nunez
and Bulashenko (2016). It is usually assumed the case where the electromagnetic
field is of the order of small perturbation of the spacetime metric. Only the influence
of the metric on electromagnetic field is mostly accounted for, not the converse.
Second, the influence of the Riemann–Cartan geometry on the electromagnetic field
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is not so easy. A free electromagnetic field is suggested to not produce torsion e.g.
Hehl et al. (1976), and there is in principle no contribution from torsion in Maxwell
equations. When a strong magnetic field coexists with matter distribution, there is
however a possibility to induce spin polarization of individual particles composing
the continuum matter e.g. Prasanna (1975a). Some authors have even suggested
that torsion play a keyrole in electromagnetism when considering electromagnetic
field within continuum with torsion e.g. Hammond (1989), Poplawski (2009). They
propose that the electromagnetic potential is represented by the torsion vectorAα :=
ℵα = ℵβαβ . The influence of torsion tensor as cosmic dislocation (singularity of the
curvature tensor) was investigated in e.g. Dias and Moraes (2005), or some material
defects as screw dislocations (Fumeron et al. 2015), or fluids with spin density
e.g. Schutzhold et al. (2002). They have included the 2-form torsion with one non-
vanishing component as 2πβδ2(r) dr∧dθ in the metric of the spacetime, then derive
Maxwell’s equations in a cylindrical coordinates to solve two interesting cases: the
electric field of a line charge, and the magnetic field of the line current. However,
they seemed to assume a connection based only a metric but do not consider the
contortion tensor for covariant derivation of Maxwell’s equations in the framework
of Riemann–Cartan geometry. Formulation of Maxwell’s equations by means of
differential forms may be not equivalent to formulation by means connection in
Riemann–Cartan spacetime or continuum e.g. Vandyck (1996). In a Riemann–
Cartan spacetime, the Faraday tensor is calculated as follows e.g. Prasanna (1975a),
Smalley (1986): Fμν := ∇μAν − ∇νAμ = ∂μAν − ∂νAμ + ℵρμνAρ . It is rather
different if calculated by means of an exterior derivative of the 1-form A = (Aμ)

e.g. Nakahara (1996), Prasanna (1975a):

F := dA �⇒ Fμν = ∂μAν − ∂νAμ (6.78)

(the vector base is assumed to satisfy the Frobenius theorem) where, in such a
case, we have exactly the same form as the Minkowski (6.25), and Riemann (6.46)
Faraday tensor. In this framework, two of the Maxwell’s equations dF = 0 would
be expected since the Faraday tensor 2-form F is exact, say F := dA, and hence
closed, dF = d (dA) = 0. To investigate electromagnetic waves within curved
continuum matter with torsion (which may be considered as a Riemann–Cartan
manifold), it is then assumed that the electromagnetic field is described by an
electromagnetic 2-form Fμν . It constitutes an extended model of electromagnetism
within curved spacetime as earlier as in e.g. Plebanski (1960), and in the framework
of differential forms e.g. Frankel (1997), Prasanna (1975a). Prasanna (1975a) has
derived the Maxwell equations in a Riemann–Cartan spacetime. In the following,
we would like to derive the Maxwell’s equations in a curved manifold with torsion
M . By using a formalism based on exterior calculus, Maxwell’s equation (6.44)
were established for various spacetimes (Minkowski, Riemann, and almost post-
Riemann) (Puntigam et al. 1997) where they considered as basic axioms the
conservation of electric charge and the conservation of magnetic flux. This allows
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them to put aside the connection structure of the spacetime. Third, either for metric-
based energy, or metric-torsion based energy, it is worth to define Lagrangian
L (Fμν, uμ,Mμν, Jμ,Aμ, · · · ) associated to the electromagnetic fields when we
face the question of variational formulation.

Remark 6.20 To relate electromagnetism with relativistic gravitation, it is interest-
ing to remind that application of the gauge invariance principle for the group of
translation (corresponding to torsion) of the spacetime M with Yang-Mills type
Lagrangian, quadratic in the field strengths Fμν (as for electromagnetism), allows
us to deduce the usual Einstein’s theory of gravitation, based on the Einstein–Hilbert
action e.g. Cho (1976a).

6.4.2 Electromagnetism Interacting with Gravitation

We derive in this subsection the equations governing the interaction of electromag-
netism with a Riemann–Cartan continuum.

6.4.2.1 Different Lagrangians in Electromagnetism

A priori definition of a Lagrangian is preferred here rather than directly considering
local equations of Maxwell and introducing at a second step the constitutive
laws. This is extension of linear constitutive laws previously investigated (6.50).
Some Lagrangian functions have been proposed for describing the evolution of
electromagnetic fields:

1. a 4-form of the Lagrangian which is Poincaré invariant for moving medium with
4-velocity uμ e.g. Obukhov (2008), Schutzhold et al. (2002):

L = −1

4
Fμν Fμν − ε − 1

2
Fμλu

λ Fμνuν (6.79)

This Lagrangian function is based on the finding of Gordon that the propagation
of electromagnetic waves in a moving dielectric continua has analogy with
the propagation of electromagnetic waves in a pseudo-Riemannian curved
spacetime. Gordon introduced an effective metric gμν := ĝμν + (ε − 1)uμuν

with ĝμν the metric of Minkowski spacetime where the continuum is flowing.
The Lagrangian is merely a alternative formulation of

L = −1

4
gμαgνβFαβ Fμν
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2. a 4-form of Lagrangian in the presence of magnetization tensorM, a current four-
vector J, a four-vector potential A e.g. Smalley and Krisch (1992) and references
herein:

L = −1

4
Fμν Fμν + 1

2
Fμν M

μν − JμAμ (6.80)

In this reference, the electromagnetic field is defined as Fμν := ∇μAν − ∇νAμ
where the connection is not torsionless. In such a way, there is minimal coupling
between the electromagnetic field and the Riemann–Cartan spacetime geometry.
The Faraday tensor is not necessarily a 2-form obtained by an exterior derivative
when considering a Einstein–Cartan spacetime.

3. A model including both the electromagnetic field and gravitation field is obtained
with the Lagrangian:

L = −1

4
Fμν Fμν − JμAμ + 1

2χ
R (6.81)

where χ involved in the Einstein–Hilbert Lagrangian is a constant for normaliz-
ing the Lagrangian. For the Maxwellian part of the Lagrangian, the raising and
lowering indices are done by mean of the gravitational metric gμν(xα).5

4. In the general case of general relativity, the metric is no longer a Minkowskian
since gμν = gμν(xγ ) depend on the coordinates of the spacetime. In an attempt
to formulate an unified theory of gravitation and electromagnetism, following the
idea of Ferraris and Kijowski, Chrusciel proposed a Lagrangian function having
the form of e.g. Chrusciel (1984):

L = L
(
Fμν,Kμν

)
, Fμν := �λμνλ and Kμν := 1

2

(
�λλμν + �λλνμ

)

5Physics background: This continuum version is the extension of Lagrangian for particles within
Minkowskian spacetime. For physical particles with relativistic speeds, the action of a charged
particle e moving within such a spacetime with electromagnetic field Aμ takes the form of e.g.
Kovetz (2000):

S :=
∫ [

−mc2 − e uμAμ
]
dτ, dτ := dt

√
1− v2/c2, uμ : (1, vi )

(
1− v2/c2

)−1
,

Aμ : (−φ,Ai)
where the Lagrangian function in terms of three dimensional variables (integration with respect to
dt), with its Euler–Lagrange equation (Heaviside-Lorentz equation) hold:

L = −mc2
√

1− v2/c2 + e (v · A− φ) �⇒ d

dt

(
mv

√
1− |v|2/c2

)

= e (E+ v× B)

(6.82)

modelling the charged particle e motion under given electromagnetic field (E,B).
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where the torsion tensor does not vanish. This is based on the idea that the
presence of electromagnetic fields bends the spacetime and therefore induces
a non vanishing curvature. He assumed that the Lagrangian which depends only
upon the tensors Fμν , and Kμν (symmetric part of the Ricci curvature tensor)
provides the basis of an unified theory of electromagnetism and gravitation.
The use of the curvature of the spacetime as the only one variable to sketch
electromagnetism and gravitation might be questionable. Nevertheless, it could
be checked that the two-covariant skew-symmetric tensor Fμν satisfies the first
set of Maxwell equations (Bianchi equations), and thus could be suggested as the
combined electromagnetic field e.g. Hammond (1989), whereas the symmetric
tensor obtained from Ricci curvature capture the gravitational fields.

Implicitly the model proposed by Chrusciel suggests that the origin of
the electromagnetism comes from the skew-symmetric part of the spacetime
connection, and then of the torsion tensor.

6.4.2.2 Variation Procedure

For the sake of the simplicity, let us consider the simplest example of action for
free electromagnetic field without sources and occurring within a Einstein–Cartan
spacetime (curved with torsion):

S :=
∫

M
Lωn with L := −1

4
Fμν Fμν + 1

2χ
R (6.83)

For the variation of the Lagrangian (6.83), it is worth to remind that the metric
tensor and the torsion tensor are independents primal variables in addition to the
electromagnetic four-potential. The Faraday tensor (here the electromagnetic field is
minimally coupled to the gravitation in a Einstein–Cartan spacetime via the torsion
of the connection) and the scalar curvature are defined by the relationships:

Fμν := ∇μAν −∇νAμ = ∇μAν −∇νAμ+ℵρμνAρ, R := gμν�μν (6.84)

where the contravariant components of the Faraday tensor Fμν are calculated by
means the connection with non zero torsion e.g. Smalley and Krisch (1992). It
should be observed that the definition (6.78) in Riemann spacetime holds for both
Euclidean and (pseudo)-Riemannian and also proposed in some post-Riemannian
spacetimes e.g. Puntigam et al. (1997). As extension the definition (6.84) is valid for
both Euclidean, Riemannian and Riemann–Cartan spacetime. This again illustrates
the fact that the extension of physical variables as Fμν can be done in many ways
(as a 2-form in e.g. Puntigam et al. (1997) or as a twice the skew-symmetric part of
the gradient in e.g. Smalley and Krisch 1992).

The first and second equations show that the Lagrangian variation of this 2-
form and curvature include both the variation of the potential Aμ, the variation of
the Riemann metric gαβ , and also the variation of the connection Γ γαβ . Here, the
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Lagrangian we consider includes Yang-Mills electromagnetic part and Einstein–
Hilbert gravitation part e.g. Charap and Duff (1977). As a first step, the Lagrangian
variation of the action (6.83) allows us to obtain the expression:

ΔS =
∫

M

{
−1

2
FμνΔFμν + 1

4
Fμν

(
gμλFρν + Fμρgλν

)
Δgλρ

+ 1

2χ

(
�λρ − R

2
gλρ
)
Δgλρ + 1

8
Fμν Fμν g

λρΔgλρ

+ 1

2χ
gμν

[
∇λ
(
ΔΓ λμν

)−∇μ
(
ΔΓ λλν

)− ℵρλμΔΓ λρν
]}
ωn

where the last equation may be derived from Palatini relation e.g. Lichnerowicz
(1955), Rakotomanana (2003). The Lagrangian variation of the Faraday tensor takes
the form of:

ΔFμν = ∇μ(ΔAν)−∇ν(ΔAμ)+ΔℵρμνAρ (6.85)

This relation is obtained by directly writing:

ΔFμν = Δ
(
∂μAν − Γ ρμνAρ

)−Δ (∂νAμ − Γ ρνμAρ
)

= (∂μΔAν − Γ ρμνΔAρ −ΔΓ ρμνAρ
)− (∂νΔAμ − Γ ρνμΔAρ −ΔΓ ρνμAρ

)

accounting for that the variation of the geometric structure, say Δℵρμν , induces a
variation of the fieldΔFμν . At a second step, the three systems of conservation laws
associated to the unknown primal variables (say the four-vector potential Aμ, the
Riemannian metric gμν , and the torsion ℵρμν) are derived by varying the Lagrangian
along the Lie-derivative variations LξAμ, Lξ gμν , and Lξℵρμν .

Remark 6.21 It should be noticed that the arbitrariness of the potential variation
ΔAμ should be used instead of the Faraday tensor ΔFμν in order to ensure the
existence of electromagnetic field.

6.4.2.3 Field Equations

The variation of the electromagnetic strength (6.85) plays a keyrole in the present
work since it allows us to couple the torsion of the continuum material and the
electromagnetic field.

Now we factorize the variation with respect to the Lagrangian variations of
the electromagnetic potential ΔAμ, the metric Δgλρ , and the connection ΔΓ λμν
respectively. The presence of the term ΔΓ λμν means that the torsion and curvature
may evolve since they are independent primal variables of the theory. By shifting
divergence terms at the boundary of the continuum M we can rearrange the
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Lagrangian variation of the action to give:

ΔS =
∫

M
∇νFμν ΔAμ ωn

+
∫

M

[
1

2χ

(
�λρ − R

2
gλρ
)

+ 1

8
FμνFμν g

λρ + Fμν

4

(
gμλFρν + Fμρgλν

)
]
Δgλρ ωn

−
∫

M

(
(Fμν − Fνμ) Aλ + 1

χ
gρν ℵμλρ

)
ΔΓ λμν ωn (6.86)

owing that the Faraday tensor is in fine expressed in terms of the potential Aμ by
means of Eq. (6.84). Due to the arbitrariness of the variation of primal variables, this
variational principle allows us to deduce the system of partial differential equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇νFμν = 0
1

2χ

(
�λρ − R

2
gλρ
)
+ 1

8
FμνFμν g

λρ + Fμν

4

(
gμλFρν + Fμρgλν

) = 0

(Fμν − Fνμ) Aλ + 1

χ
gρν ℵμλρ = 0

(6.87)

where we notice a slightly extension of the fields equations in Charap and Duff
(1977) for Riemann–Cartan spacetime. The first row of the system (6.87) expresses
the Maxwell’s equations in Riemann–Cartan vacuous spacetime, and it should
be stressed that in this Lagrangian (model), the potential Aμ may be apparently
calculated independently on the gravitation (except eventual coupling at the bound-
ary ∂M ). Once again, we remind that the connection approach, for example in
matter (6.45), is equivalent to the differential form approach (6.44) when the
spacetime is Riemannian without torsion (Vandyck 1996), or when the non metricity
of the connection is traceless. The Maxwell’s equations of the system (6.87) show
that the connection approach with torsion is “naturally” deduced from a variation
principle, and the same form as the connection approach is obtained. It is worth to
give some details about Eq. (6.87) by writing:

∇νFμν = ∇ν
(
gμαFαβg

αν
) = (gμαgνβ − gμβgνα)∇ν∇αAβ = 0

owing that the connection is metric compatible, then ∇γ gαβ ≡ 0 and that the skew-
symmetric Faraday tensor is defined as Fαβ := ∇αAβ−∇βAα (see Eq. (6.84)). This
later formulation points out the wave characteristic of the electromagnetic field in
which the unknowns are the potential componentsAβ = (φ,A1, A2, A3).
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6.4.2.4 Electromagnetic Wave Equation

The Maxwell’s equation (6.87) (first row) may be used to analyze the electromag-
netic wave propagation within a curved spacetime with torsion. Let consider a
spacetime M endowed with a metric gαβ and a connected with Γ γαβ , this later is
compatible with the metric. Maxwell’s equations may be re-written as follows:

∇νFμν = ∇ν
(
gμαgανFαβ

)

= ∇ν
[
gμα∇αAν − gνβ∇βAμ

]

= gμα
[
∇α∇νAν − ℵγνα∇γ Aν +�νναγAγ

]
− gνβ∇ν∇βAμ = 0

where we have used the Schouten’s relations (5.21). By arranging the previous
relationships, we notice that the Maxwell’s equations include, as for elastic wave
propagation, a classical wave part, a divergence term, and the contribution of the
torsion and the Ricci curvature of the spacetime:

− gνβ∇ν∇βAμ + gμα∇α∇νAν − gμαℵγνα∇γ Aν + gμα�αγAγ = 0 (6.88)

The first term expresses merely a D’Alembertian operator. The second term may
be dropped if we assume a null divergence as a gauge condition. As for Riemann
spacetime, the search of solutions as Aμ = Âμeκσ x

σ
provides the dispersion

equation:

Det
[−δμν gσβκσ κβ + gμσ κσ κν − gμαℵγνακγ + gμα�αν

] = 0 (6.89)

Remark 6.22 In classical electromagnetism theory, null condition of the divergence
is called Lorenz condition which fixes the electromagnetic potential. The condition
∇νAν ≡ 0 extends the usual Lorenz condition in the framework of Riemann–Cartan
geometry, more specifically in the way of Gauss units system.

For a non curved spacetime without torsion, the electromagnetic wave propagation
equation reduces to � Aμ = 0. The third term introduces a first covariant derivative
which leads to a diffusion of the wave (spacetime attenuation), and the last term
points out a breathing mode whenever the boundary conditions allow it. What
should be observed too is that the torsion and Ricci curvature influence the wave
propagation linearly. It should be stressed that the spacetime geometry and in fine
the gravitation is in fact tightly linked to the electromagnetism phenomenon. This
may not be perceived at a first sight.

In sum, the second row of the system (6.87) gives the coupling equation of the
electromagnetic field and the gravitational field one. The electromagnetic terms
act as a source-term for the gravitation. They act as a kind of electromagnetic
energy generating evolution of the spacetime metric. We recognize the Einstein field
equation in the absence of the electromagnetic field. Despite its apparent relative
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simplicity, the system of partial differential equations (6.87) remains complex
since the connection, and by the way the Ricci and total curvatures, includes both
the (gravitational) metric gμν(xλ) and the contortion tensor Tγμν(xλ). The use of
dispersion equation (6.89) allows us to “drop” the covariant derivative although it is
always present implicitly.

6.4.2.5 Electromagnetism and Spacetime Defects

The third row of (6.87) gives the equation to calculate the torsion field. It is striking
its analogy with the result obtained by Fernando et al. (2012) by considering a
particular Riemann–Cartan spacetime and working with contortion tensor. It is a link
between electromagnetic fields and the torsion of the spacetime. What is interesting
is that the electromagnetic field allows us to calculate with an algebraic explicit
formula the torsion field by means of the third row. Once the torsion is obtained, we
can apply covariant derivative within Riemann–Cartan geometry. By multiplying
with gνσ , the explicit formula for calculating the torsion is obtained accordingly by
means of an algebraic relation:

ℵμλσ = −χ gσν
(
Fμν − Fνμ

)
Aλ = −2χ gσν

(
gμαgνβ − gμβgνα)Aλ∇αAβ

(6.90)

owing the expression of the electromagnetic strength in terms of potential. It may
be noticed that the contribution of the electromagnetic potential to the torsion field
is of second order “Aλ∇αAβ”.

Remark 6.23 The investigation of the interaction of electromagnetic masses with
Einstein–Cartan spacetime was done by numerous authors for charged and spinning
“static” dust (static means here no displacement of the center of mass), for perfect
fluids with spin density e.g. Smalley and Krisch (1992). It was shown that by
analyzing the solutions of Maxwell’s equations, the torsion field together with the
spin of Einstein–Cartan gravitation theory may be suggested as produced by the
electromagnetic field e.g. Tiwari and Ray (1997). Paraphrasing these authors, it was
concluded that in the absence of electromagnetic fields, the body has a vanishing
spin density which itself is associated to the spacetime torsion e.g. Hehl and von
der Heyde (1973). The third algebraic equation of (6.87) conforms this conclusion
concerning the torsion field.

Remark 6.24 What could be relevant is that the torsion field of the Riemann–
Cartan vacuum spacetime may be explicitly calculated. In other words and from
the physical point of view, torsion is thought to be generated by the electromagnetic
field demonstrated here by assuming the simplest Lagrangian of the type (6.83).

Remark 6.25 From the system of equations governing the electromagnetism inter-
acting with gravitation (6.87), we notice that the electromagnetic energy-momentum
in a vacuum has the same shape as for as for electromagnetic within a continuum
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matter (Obukhov and Hehl 2003):

T λρ = 1

4
FμνFμν g

λρ − Fμν

2

(
gμλFρν + Fμλgρν

)
(6.91)

This is a nonsymmetric Minkowski (canonical) energy-momentum tensor e.g.
Obukhov (2008) for the free electromagnetic field occurring within spacetime.
For electromagnetic field without sources and occurring within a Einstein–Cartan
continuum (curved and non zero torsion) matter, the Lagrangian (6.83) is slightly
extended to:

S :=
∫

M
L ωn with L := −1

4
Hμν Fμν + 1

2χ
R (6.92)

where the constitutive laws are given by Eq. (6.28). The same developments as
previously may be conducted to analyze the behavior of the matter electromagnetic
interaction. There is a controversy between the version of Minkowski and that of
Abraham, not deduced from a Lagrangian. We do not enter into this long last debate,
which was done in the past. We have just to remind that the Minkowski version
is defined in the framework of Lagrange-Noether conforming to the invariance
approach we adopt in this work. Obukhov and Hehl suggested the adoption of the
Minkowski like version (6.91) which is motivated by the Lagrangian axiomatic
approach, and by the experimental evidence conducted in the past by Walker and
Walker (which is based on experimental measurements of dielectric disk placed in
a crossed oscillating radial electric and longitudinal magnetic fields), and James
(which is based on a similar experimental jig but with radial electric field and
azimuthal magnetic field) (Obukhov and Hehl 2003). For illustrating, consider the
continuum matter with isotropic constitutive laws Hμν(Fαβ) by analogy to (6.33):

Hμν := Ξμναβ Fαβ, Ξμναβ := ε (gμαgνβ) (6.93)

where the electromagnetic constant ε is assumed uniform within the matter. Metric
components gμν(xλ) are point dependent within the matter.

Remark 6.26 In the equations we have previously developed, the torsion does not
propagate. In order to account for the torsion propagation, i.e., a well-known method
would be to add a scalar bilinear term of the covariant derivatives of the torsion e.g.
Hammond (1987). Hammond in this reference has interestingly shown a physical
interpretation that the trace of the torsion ℵν := ℵμνμ can be considered as the
electromagnetic four-potential, and the skew-symmetric part of the Ricci curvature
tensor as proportional to the electromagnetic Faraday tensor. For that purpose, he
has considered the Lagrangian:

S :=
∫

M

(
1

χ
R+ a GμνG μν

)
with Gμν := ∂μℵν − ∂νℵμ
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where the independent variations of the metric and the torsion are the rules. In his
approach the electromagnetic variables are deduced from spacetime geometry. Our
approach in the present book is slightly different.

6.5 Einstein–Cartan Gravitation and Electromagnetism

In this section we deal with some particular solutions of the system (6.87) in
presence of electric charges and non vanishing torsion field. We consider some
special examples of spacetimes with spherical symmetry for illustration. The first
example relates the influence of an electric charge on the spacetime geometry,
without torsion. The second example illustrates the influence of the torsion on the
geometry of the spacetime. The two examples are merged into one.

6.5.1 Reissner-Nordström Spacetime

The Reissner-Nordström metric corresponds to the static solution of (6.87) allowing
us to determine the gravitational field of a punctual spherical non-rotating charge
Q, contained in body of mass m. The torsion is assumed to be zero. We remind that
the punctual electric chargeQ is assumed to be at rest at the origin. The goal of this
subsection is to calculate the gravitational effect of a body with electric charge.6

6.5.1.1 Classical Reissner-NordströmMetric (1916–1918)

Let consider a static gravitation and electromagnetic field with a spherical symmetry
governed by the system of equation (6.87). The static condition requires that the
metric is independent of the time x0, and that the time reversal does not modify the
metric. However, it is not necessary to assume a static metric. It can be deduced. We
can search for spacetime metric defined by the line element:

ds2 := e2ν (dx0)2 − e2μ dr2 − r2 dθ2 − r2 sin2 θdϕ2 (6.94)

where the two scalar functions ν(r) and μ(r) depend only on the radius r . This line
element constitutes the most general form of a spherical symmetric line element.
For the sake of the simplicity, we directly consider here a non transient case.

6In astrophysics, most planets as stars being electrically neutral, the Reissner-Nordström may be
considered as only an academic exercise, although interesting, rather than a realistic and relevant
field of gravitation.
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To begin with, we only consider the case where torsion vanishes which reduces
the model to the classical Reissner-Nordström metric e.g. Ryder (2009). The only
non vanishing coefficients of the Levi-Civita connection ∇ are the symbols of
Christoffel calculated by means of the partial derivative of the metric components:

Γ
0
01 = Γ 0

10 = ν′

Γ
1
00 = ν′ e2ν−2μ, Γ

1
11 = μ′, Γ

1
22 = −r e−2μ, Γ

1
33 = −r e−2μ sin2 θ

Γ
2
12 = Γ 2

21 =
1

r
, Γ

2
33 = − sin θ cos θ

Γ
3
13 = Γ 3

31 =
1

r
, Γ

3
23 = Γ 3

32 = cot θ

The non vanishing components of the Ricci curvature�αβ := �γγ αβ hold:

⎧
⎪⎪⎨

⎪⎪⎩

�00 = e2ν−2μ
[
ν′′ + (ν′)2 − ν′μ′ + (2ν′/r)]

�11 = −
[
ν′′ + (ν′)2 − ν′μ′ + (2μ′/r)]

�22 = e−2μ
(−1+ r μ′ − r ν′)+ 1

�33 = e−2μ
[(−1+ r μ′ − r ν′)+ 1

]
sin2 θ

the off-diagonal components all vanish. The Einstein tensor Gαβ := �αβ −
(R/2)gαβ has also four non vanishing diagonal components:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G00 = e2ν
[
e−2μ

(
2μ′

r
− 1

r2

)
+ 1

r2

]

G11 = e2μ
[
e−2μ

(
2ν′

r
+ 1

r2

)
− 1

r2

]

G22 = r2 e−2μ
[
ν′′ + (ν′)2 − ν′μ′ + ν

′ − μ′
r

]

G33 = r2 e−2μ
[
ν′′ + (ν′)2 − ν′μ′ + ν

′ − μ′
r

]
sin2 θ

(6.95)

Remark 6.27 It is important to mention that the components (6.95) are the projec-
tion of the Einstein tensor onto the dyadic: {dx0⊗dx0, dr⊗dr, dθ⊗dθ, dϕ⊗dϕ}.
It is sometimes worth to define the coframe for the tensor decomposition:

{
θ0 := eν dx0, θ1 := eμ dr, θ2 := r dθ, θ3 := r sin θ dϕ

}
(6.96)

It could be checked that for a vacuum spacetime without torsion, the Einstein tensor
vanishes and by means of the two first field equations (6.95), we deduce easily that
ν′ + μ′ = 0. In the particular case when the electromagnetic field Fμν ≡ 0 is equal
to zero in the relation (6.87), and when requiring additionally a flat Minkowskian
spacetime at r → ∞, we obtain the classic Schwarzschild metric characterized by
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the line element (2m being a constant of integration):

ds2 =
(

1− 2m

r

)
(dx0)2 −

(
1− 2m

r

)2

dr2 − r2 dθ2 − r2 sin2 θdϕ2 (6.97)

Without electromagnetic field, the torsion tensor is also equal to zero according to
(6.87).7 In addition to gravitation field induced by the Schwarzschild metric, we
add now the influence of a electrostatic charge. We thus consider a massive body of
massM with spherical symmetry corresponding to the Schwarzschild radiusm and
with the electric chargeQ. We suggest first the Lagrangian within spacetime (6.83).
To go further, let now assume the existence of a radial electric field E so that the
Faraday electromagnetic field holds:

Fμν := E

⎡

⎢
⎢
⎣

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ �⇒ Fμν := E

⎡

⎢
⎢
⎣

0 1 0 0
−1 0 0 0

0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ (6.98)

by using the Riemannian metric gμν to uprise the indices. In addition, consider
a torsionless Riemannian manifold. Introduction of this particular electromagnetic
field into the relations (6.87), and owing that the Maxwell’s equations reduce to two
components:

⎧
⎨

⎩

∇νF0ν = ∂0E = 0

∇νF1ν = ∂rE +
(
ν′ + μ′ + 2

r

)
E = 0

we obtain the system of governing equations for the gravito-electromagnetic field.
The first row expresses that the field is stationary whereas the second allows us to
explicitly obtain the electric field. The second row of the system (6.87) leads to the
coupling of gravitation and electromagnetic fields in this particular case:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
e−2μ

(
2μ′

r
− 1

r2

)
+ 1

r2

]
= 3χ

4
E2

[
e−2μ

(
2ν′

r
+ 1

r2

)
− 1

r2

]
= −3χ

4
E2

[
ν′′ + (ν′)2 − ν′μ′ + ν

′ − μ′
r

]
= 0

E′ +
(
ν′ + μ′ + 2

r

)
E = 0

(6.99)

7For instance in the equation G00 = 0, we define U(r) := e−2μ(r) to arrive to the differential
equation U ′(r) + U(r)/r = 1/r . We remark that U(r) := 1 is a particular solution of
the non homogeneous equation. The second solution may be found by a change of variable
V (r) := U(r)− 1.
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where the unknowns are the three functions ν(r), μ(r) and E(r). Summation of
two first equations (6.99) gives ν′ + μ′ = 0. This allows us to have the solution for
electric field which is the case where the electric field surrounding a non rotating
charge Q (a constant of integration) depends on the distance r as: E(r) := Q/r2.
For the general solution of the first homogeneous equation of (6.99), as for the case
where the electric field is set equal to zero, we may define a variable change to have
e−2μ := 1 − V (r) and deduce the differential equation replacing the first row of
system (6.99):

V ′(r)
r

+ V (r)
r2 = 0 �⇒ V (r) = −2m

r

We thus deduce:

e2ν = e−2μ = 1− 2m

r
+ 3χ

4

Q2

r2 (6.100)

where 2m is also constant of integration ensuring to obtain Minkowskian spacetime
for large distance r from the origin. We recognize components of the Reissner-
Nordström metric. However, care should be taken since in view of the entire system
of equations (6.99), it is observed that we have four equations with three unknowns,
then the compatibility of all of them is mandatory. The resulting metric takes the
form of:

ds2 =
(

1− 2m

r
+ 3χ

4

Q2

r2

)
(dx0)2

−
(

1− 2m

r
+ 3χ

4

Q2

r2

)−1

dr2 − r2dθ2 − r2 sin2 θdϕ2 (6.101)

This gives the metric describing the spherically symmetric spacetime satisfying the
Einstein field equation in a region with no matter but with a radial electric field
generated by a chargeQ.

6.5.1.2 Electric Charge and Spacetime Torsion

A next question would be the eventually role of the electric charge on the creation
of spacetime torsion that seems to be suggested by the third equation of the
system (6.87). This is legitimate since we have assumed but not deduced that the
torsion field is equal to zero for the classical Reissner-Nordström metric. Now we
have to check if this is only the possible situation.

Remark 6.28 Adding the contortion tensor to the symbols of Christoffel leads to the
connection coefficient, the Riemann–Cartan curvature together with Ricci curvature
are obtained accordingly. We nevertheless observe that the system of equations
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(6.87) governing both gravitation and electromagnetism is highly coupled in the
framework of Riemann–Cartan physics. The third row of (6.87) is expected to
allow us to determine the torsion field by means of the algebraic equation from
the electromagnetism variable.

The electromagnetic field is expected to be a potential generator of torsion in the
spacetime. We have deduced by means of Eq. (6.87) not only the possibility of
their coupling but also the determination of torsion in terms of the electromagnetic
strength of Faraday. The torsion is produced according to quite general relationship:

gρν ℵμλρ = χ
(
Fνμ − Fμν

)
Aλ (6.102)

For the particular example of spherical symmetric electrostatic field we previously
treated, care should be however taken since the two non vanishing components of
the torsion in the presence of the particular electromagnetic field (6.98) are:

ℵ0
01 = −2χe−2μ(r)E(r)A0(r) = −ℵ0

01, ℵ1
00 = 2χe−2ν(r)E(r)A0(r)

For instance, assuming a priori that the electric field is given as E(r) := Q/r2

seems to enforce a solution which rigorously should be a priori solved by means
of Maxwell’s equations e.g. Puntigam et al. (1997). The skew-symmetry of the
second equation imposes that it is true if and only if A0(r) ≡ 0 or E(r) ≡ 0.
In other words, a electric field alone E(r) cannot produce torsion. Of course
a systematic investigation of the four-potential Aμ := (φ,A1, A2, A3) should
be conducted. Nevertheless, description with teleparallel gravity theory in the
Weitzenböck spacetime with non vanishing torsion but zero curvature is not the only
path to couple electromagnetism and gravitation as suggested in e.g. de Andrade and
Pereira (1999). The presence of the torsion in the governing equations is essentially
due to the Palatini relation (variation of the curvature), and its consequence is
the presence of additional skew-symmetric term in the variation of the Faraday
tensorFνμ e.g. Frankel (1997), Nakahara (1996). This seems to conform to the
finding of de Andrade and Pereira (1999) which has shown, by using the teleparallel
description of gravitation, that electromagnetic field is also able to produce torsion
by reading Eq. (6.102) from right to left.

6.5.2 Schwarzschild Anti-de Sitter (A dS ) Spacetimes

One of the major actual problems in the theory of physics and cosmology concerns
the presence and the smallness of the amplitude of the cosmological constant Λ.
The accounting of the dark energy allows us to include the accelerated expansion
of the universe by adding a cosmological constant Λ �≤ 10−52[m−2]. It is proven
that the static spherical symmetric solutions of the Einstein’s equation with negative
cosmological constant Λ < 0 lead to the so-called Anti-de Sitter spacetime in the
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Fig. 6.2 A spherical massive
body source of the curvature
and the torsion of
surrounding spacetime. Only
ℵ0

23 = 2ℵ0(r) = −ℵ0
32 is non

zero whereas all other
components vanish

framework of Einstein gravitation theory. For attempting to overcome this problem,
we adopt a different path in this work by considering rather a Einstein–Cartan
spacetime with uniform torsion to arrive at the A dS spacetime. Comparing the
curvature formalism and the torsion formalism to describe the gravitation field, it
was shown in e.g. de Andrade and Pereira (1999) that the description in terms of
curvature does not allow us to introduce the torsion without violating the gauge
invariance, but a teleparallel gravitation based on the torsion variable enables to
show that the gravitational field interacts with the electromagnetic field by choosing
appropriate covariant derivative (in turn based on the Levi-Civita connection) to
define the Faraday tensor.

6.5.2.1 Torsion of Spacetime with Spherical Symmetry

The objective of this paragraph is to define the simplest example of Einstein–Cartan
gravitation model with spherical symmetry (Fig. 6.2). For this purpose, let now
consider on a Riemann–Cartan spacetime a particular field of torsion ℵγαβ(xμ) for

which the non vanishing components are only ℵ0
23 = 2ℵ0(r) = −ℵ0

32 (the other
components are zero) as in e.g. Prasanna (1975b). However, we do not consider in
this example the problem of stationary spinning fluid as in Prasanna (1975b), we
directly consider an empty curved and non zero torsion spacetime modeled by a
Riemann–Cartan manifold. Physically, this torsion field may be interpreted as the
consequence of spins of particle fluids that are aligned in the radial direction and
where particles are assumed to be static. It should be mentioned the decomposition
means ℵ = ℵ0

23θ
2⊗θ3+ℵ0

32θ
3⊗θ2. Nevertheless, we have not to relate this torsion

field with the fluid spin in this subsection. We consider the torsion at its own. The
Einstein tensor Gμν is calculated by means of the contortion tensor Tγαβ and the

curvature tensor �γαβλ calculated from the relations (2.44) and (4.99) respectively.

The non zero components of the contortion tensor are (in the basis {θ0, θ1, θ2, θ3}):
⎧
⎨

⎩

T0
23 = Ω0

23 = ℵ0, T0
32 = −T0

23
T2

03 = g22g00 Ω
0
23 = g22g00 ℵ0, T2

30 = T2
03

T3
02 = g33g00 Ω

0
32 = −g22g00 ℵ0, T3

20 = T3
02

(6.103)
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Introducing these equations in the relation (4.99) gives the Ricci curvature:

�βλ := �ααβλ = �βλ +∇αTαβλ −∇βTααλ + TααμT
μ
βλ − TαβμT

μ
αλ

A straightforward calculus gives the non zero components:

�00 = �00 − 2g22g33g2
00 Ω

0
23Ω

0
32,

�11 = �11, �22 = �22, �33 = �33

Projection of the additional term onto the basis {dx0, dr, dθ, dϕ} gives the
component (Prasanna 1975b):�00 = �00 + 2e2ν ℵ2

0 since θ0 := eνdx0, θ2 := rdθ
and θ3 := r sin θdϕ. Only the time component is influenced by the torsion tensor
in such a case. The Einstein tensor is obtained accordingly by considering this
additional term in the relations (6.95). Projection of the Einstein tensor onto the
co-basis gives:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G00 = e2ν
[
e−2μ

(
2μ′

r
− 1

r2

)
+ 1

r2 + ℵ2
0

]

G11 = e2μ
[
e−2μ

(
2ν′

r
+ 1

r2

)
− 1

r2 − ℵ2
0

]

G22 = r2 e−2μ
[
ν′′ + (ν′)2 − ν′μ′ + ν

′ − μ′
r

− ℵ2
0

]

G33 = r2 e−2μ
[
ν′′ + (ν′)2 − ν′μ′ + ν

′ − μ′
r

− ℵ2
0

]
sin2 θ

(6.104)

since Gμν := �μν − (R/2)gμν = Gμν − (R − R)/2 gμν . In a Einstein–Cartan
vacuum spacetime, the field equationGμν = 0 permits to obtain by adding the two
first equation of (6.104): ν′ + μ′ = 0 to give eμ = e−ν by choosing again worth
asymptotic behavior at r → ∞. Taking the first equation and owing that e2ν �= 0,
we have for a vacuum:

e−2μ
(

2μ′

r
− 1

r2

)
+ 1

r2 + ℵ2
0 = 0

by making a change of variable U(r) := e−2μ the equation reduces to: [rU(r)]′ =
1 + ℵ2

0(r) r
2. In a general case, the field ℵ2

0(r) is unknown and its resolution is
coupled with other unknowns in the system (6.104). If we assume a uniform torsion
field ℵ0(r) = ℵ0, for the sake of the simplicity, we directly obtain the solution:

U(r) = 1− 2m

r
+ ℵ

2
0

3
r2 (6.105)

by choosing the constant of integration 2m (black hole radius). The constant
2m := 2GM/c2 reduces to the Schwarzschild radius of a massive body M . We
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recognize here an Schwarzschild-anti-de Sitter (A dS ) spacetime metric where
ℵ2

0(r) := Λ > 0 (see Eq. (4.43)) is a kind of cosmological constant, which is a
particular case of Kottler spacetime metric with line element:

ds2 =
(

1− 2m

r
+ Λ

3
r2
)
(dx0)2

−
(

1− 2m

r
+ Λ

3
r2
)−1

dr2 − r2dθ2 − r2 sin2 θdϕ2 (6.106)

Remark 6.29 As a finding, it should be mentioned that the anti-de Sitter spacetime
metric constitutes a solution of the Einstein–Cartan field equations with an analogy
of an attractive cosmology constant. In fact, this seems unphysical but could be
considered as a regularization of the gravitation field at large distance which is not
flat for r → ∞. The horizon of the Anti-de Sitter spacetime is merely related to
the torsion field �2 := 3/ℵ2

0 suggesting that the amplitude of the torsion tensor is
very great. In view of the physical interpretation of the torsion tensor as the density
of non smoothness of fields (density of dislocations in the context of theory of
dislocations), it suggests that the spacetime has very high defects density as the
spacetime is merely considered as a set of microcosms (see Fig. 6.3 for a schematic
picture of the spacetime).

Fig. 6.3 Scheme of an affinely connected manifold with torsion. The Riemann–Cartan spacetime
RC is assumed to be a set of infinitesimal “microcosms” linked each other by metric compatible
connection Γ γαβ = Dγαβ +T

γ
αβ . Riemann–Cartan continuum assumes metric compatibility meaning

that the metricity Qγαβ := ∇γ gαβ ≡ 0 on RC . Torsion field characterizes the density of defects
locally (defined here by the dislocations between “microcosms” on the figure e.g. Rakotomanana
2003). For short, dislocation is a line defect, the density is defined as the total length of dislocation
per unit volume [m/m3] = [m−2]. It is the number of dislocation lines intersecting a unit area. For a
lose comparison, dislocation density is usually of the order of 1010[m−2] in a metal, increasing up
to �1016[m−2] after work hardening and fatigue. In the present work, we expect for the spacetime
a very small density of defects as ℵ0 � 10−26[m−2] for the spacetime, meaning in fine to a kind of
smooth dusts cloud
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Capozziello and his co-workers already investigated the relation between the
cosmological constant Λ with the torsion field by considering Einstein–Cartan
spacetime. They take into account a torsion field ℵ �= 0 which leads to a negative
pressure contribution in the cosmological dynamics and therefore to an accelerated
behavior of universe. They stated that the presence of torsion has the same effect
as a cosmological constant e.g. Capoziello et al. (2003). In some sense, a spin
density acts as a source of torsion and then replaces the dark matter concept. In the
same context of Einstein–Cartan gravitation, a more recent work has nevertheless
contradicted the previous results in Capoziello et al. (2003), by confronting them
with the supernovae data from Hubble diagram (Schücker and Tilquin 2012).
Independently on the experimental measurements, the present work attempts to
show that the torsion tensor by considering an Einstein–Cartan gravitation is related
to the cosmological constant for the Anti-de Sitter spacetime in Eq. (6.106). Further
studies should be done for other spacetimes involving the cosmological constant.

Some authors consider the cosmological constant as one of the major problems
for the modern theory of cosmology and physics. Quasi-exhaustive review is
available in a recent of multiple-authors paper (Bull et al. 2016) about the relevance
of the non zero cosmological constant, namely about the very unnatural small value
ofΛ and its introduction as a quasi-empirical constant to capture the dark energy in
the framework of ΛCDM theory (a cosmological theory based on the existence of
Cold Dark Matter and cosmological constant Λ). It is well known that the ΛCDM
model lies upon the assumption of the existence of dark matter, dark energy and the
inflation field, which induces some controversies. On the one hand, this model turns
out to be predictive and relatively robust with respect to old and recent cosmological
experiments in a large extend (although very large scale lengths greater than Solar
System need further experimental observations, and very small scale lengths at the
quantum level are out of reach). On the other hand, the incorporation of a unique
extremely low and unnatural value of the cosmological constant Λ, particularly in
the Planck units, and why not a zero value is not satisfactory from theoretical point
of view even if the ΛCDM model remains an effective (phenomenological) model.
Despite its successful to explain most of cosmological problems, the definition of
a cosmological constant as an ad hoc parameter and without a link with the small
scale length physics phenomenae might be also unsatisfactory for physics point of
view.

Several ways may be proposed to build gravitation theory to overcome the
problem of Λ in the ΛCDM model among them the increasing the spacetime
dimension (greater than 4), the introduction non-local gravitation, and the devel-
opment of modified gravitation. In the present work, we would like to remain as
simplest as possible. The accounting of the local topology defects of the spacetime,
or more generally the accounting of theory of microcosms e.g. Gonseth (1926)
which are not metrically connected but rather affinely connected, and then based
on the presence of a non vanishing torsion field ℵγαβ in the spacetime allows us to
derive the Schwarzschild-Anti-de Sitter spacetime by adding in fine a contortion
tensor as primal variables other than the usual metric tensor. Some remarks should
be done. The negativity of Λ < 0 leads to a universe re-collapsing rather than
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expansion, nevertheless the A dS /CFT conjecture is hopefully a guiding result to
link gravitation with quantum physics (Maldacena 1998). The equality ℵ2

0 := Λ

seems very interesting owing that a torsion field ℵγαβ on a manifold captures the
local density of defects on a manifold e.g. Rakotomanana (1997). Extremely low
values of Λ means no more than a very high density of defects. In some sense, the
basic equation of the Einstein relativistic gravitation is exactly obtained to account
for the spherical symmetric tensor metric with Λ but the physics interpretation
is completely different. The torsion field is a local variable and has very clear
geometrical local interpretation for the spacetime and not for any other dark matter
and dark energy assumption. The covariance theorem we stated in the first part of
this work allows us to go beyond the Lovelock’s theorem on the uniqueness of
Einstein tensor e.g. Lovelock (1969) by building Lagrangian function depending on
the metric, the torsion and the curvature rather than on the metric and its Levi-Civita
curvature only.

We remind that for non zero torsion field, it has been shown (see also previous
chapter) that the torsion field may be considered as a source and engenders a non
uniform cosmological constantΛ(xμ).

Remark 6.30 It is interesting to remark that accounting of a uniform radial torsion
field allows us to obtain the anti-de Sitter spacetime metric which is also solution of
the Einstein equation with a attractive cosmology constant Λ := ℵ2

0. It highlights
the role of a torsion field in the theory of gravitation at least at the same level as
the cosmological constant, which defines is the value of the energy mean density
of the vacuum of spacetime. The attractiveness of anti-de Sitter spacetime with
metric (6.106) can also be interpreted as an empty spacetime with negative energy,
which causes this spacetime to collapse in on itself. The interest of A dS spacetime
is mostly in the domain of quantum physics, thermodynamics of black holes, and
the correspondence between A dS and Conformal Field Theory (CFT) and high
energy processes. Nevertheless, we think at a modest level that the accounting of
Einstein–Cartan spacetime torsion may give new insights for future relation of the
A dS , the torsion field and the quantum mechanics.

6.5.3 Extension to Electromagnetism-Matter Interaction

Interaction of electromagnetic waves with matter is a quite complicated from
physics point of view. Depending on the scale length observation, matter should
be considered as comprised of atoms. At another level, say subatomic, matter is
mostly composed of empty space. At a continuum level, spacetime is assumed to
be filled bay continuum matter. In this subsection, we are interested in modelling
the interaction of electrodynamics with matter with non uniform properties as slight
extension of the model (6.92). Let thus consider the interaction of electromagnetism
with a continuum matter with constitutive laws:

Hμν = ΞμναβFαβ (6.107)
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where the tensor Ξμναβ(gλρ,ℵγσρ) depend on the metric and the torsion tensor.
Metric and torsion argument are considered to ensure covariance.

6.5.3.1 Basic Equations of Interaction

We are working within an Einstein–Cartan spacetime which is a curved continuum
with torsion in this subsection. There is additionally an electromagnetic field. The
spacetime curvature explicitly appears in the Lagrangian as that of Einstein–Hilbert.
Let consider now the Lagrangian (6.92) where the electromagnetic field interacts
with a continuum matter:

L := −1

4
Hμν Fμν + 1

2χ
R (6.108)

in which the constitutive laws hold Hμν = ΞμναβFαβ . The only difference with
the previous developments is the contribution of the term: Ξμναβ := ε gμαgνβ

which includes the material properties and constitutes a tangent tensor. We remind
that the influence of the physical properties of the matter is pointed by the presence
of ε := εrε0 which is the electric permittivity of the material. The other terms in
function of the metric components are related to the geometry of the medium. First
after application of a Lagrangian variationΔ,

ΔS =
∫

M

{
−1

2
HμνΔFμν − 1

4
ΔΞμναβ FμνFαβ

+ 1

2χ

(
�λρ − R

2
gλρ
)
Δgλρ + 1

8
Hμν Fμν g

λρΔgλρ

+ 1

2χ
gμν

[
∇λ
(
ΔΓ λμν

)−∇μ
(
ΔΓ λλν

)− ℵρλμΔΓ λρν
]}
ωn

for which all divergence terms may be dropped by assuming a zero flux at the
boundary of the medium ∂M . The Lagrangian variation of the tangent tensor of
constitutive laws holds:

ΔΞμναβ FμνFαβ = ∂Ξμναβ

∂gλρ
Δgλρ FμνFαβ + ∂Ξ

μσαβ

∂ℵλρν
Δℵλρν FμσFαβ (6.109)

The previous variation form becomes:

ΔS =
∫

M

{
−1

2
HμνΔFμν − 1

4

(
∂Ξμναβ

∂gλρ
FμνFαβ

)
Δgλρ

+ 1

2χ

(
�λρ − R

2
gλρ
)
Δgλρ + 1

8
Hμν Fμν g

λρΔgλρ
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− 1

4

[(
∂Ξμσαβ

∂ℵλρν
− ∂Ξ

μσαβ

∂ℵλνρ

)

FμσFαβ

]

ΔΓ λρν

+ 1

2χ
gμν

[
∇λ
(
ΔΓ λμν

)−∇μ
(
ΔΓ λλν

)− ℵρλμΔΓ λρν
]}
ωn

Second after application of Lie derivative variation, the field equations governing
the interaction of the electromagnetic and the gravitation are obtained accordingly
by varying arbitrarily the primal variables:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇νHμν = 0
1

2χ

(
�λρ − R

2
gλρ
)
+ 1

8
HμνFμν g

λρ − 1

4

(
∂Ξμναβ

∂gλρ
FμνFαβ

)
= 0

1

4

(
∂Ξμσαβ

∂ℵλρν
− ∂Ξ

μσαβ

∂ℵλνρ

)

FμσFαβ + (Hμν −Hνμ) Aλ + 1

χ
gρν ℵμλρ = 0

(6.110)

which slightly extends the vacuum equation (6.87). Instead of the contravariant
components of the electromagnetic field, we introduce here the dual variables H.
The first row of the system (6.110) expresses the Maxwell equation:

∇νHμν = εgμαgνβ∇νFαβ = 0

since the connection is compatible with the metric tensor and the material properties
assumed to be uniform within the volume of reference.

To go further let us consider the first and third equations of the system (6.110).
As for the Maxwell’s equations within vacuum spacetime, the above equation may
be formulated by means of four-potential vector Aμ by introducing properties of
curvature tensor, the metricity of the connection and the Lorenz gauge (∇νAν ≡ 0).
The second equation of (6.110) should be considered as an equation allowing us to
calculate the interaction of the gravitation and the electromagnetic field. Once the
electromagnetic field determined, the gravity is calculated. The third equation may
be re-arranged to isolate the torsion. The two equations thus give, by assuming a
null divergence for the potential ∇νAν = 0,

{
−gνβ∇ν∇βAμ − gμαℵγνα∇γ Aν + gμα�αγ Aγ = 0

2εχ (∇γ Aα −∇αAγ )Aβ = ℵγαβ
(6.111)

where, in the Maxwell’s equations, the first term represents a wave equation, the
second term a diffusion contribution due to the torsion field, and the last term
with the Ricci curvature introduces a “breathing” mode due to the non vanishing
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of curvature tensor. It should be reminded that the torsion and the curvature might
be attributed to the abrupt gradients of scalar field and vector field within the matter
respectively. It should be pointed out that the torsion field is of second-order with
respect to the potential Aα.

Remark 6.31 By proposing a particular Riemann–Cartan spacetime structure, and
working with contortion tensor rather than with the torsion tensor, a similar and
interesting relation as the second row of the system (6.111) is obtained in Fernando
et al. (2012) without dealing with a variational formulation.

Remark 6.32 Throughout this section, we have define the Faraday tensor asFαβ :=
∇αAβ − ∇βAα where the connection Γ γαβ has non torsion. The U(1) gauge
invariance of Maxwell’s equations is violated without cautions in such a way. Indeed
by modifying the potential as Aβ → Aβ + gβγ∇γΛ where Λ(xμ) is an arbitrary
function, we get:

Fαβ := ∇αAβ −∇βAα → ∇αAβ −∇βAα +
(∇α∇βΛ−∇β∇αΛ

)

︸ ︷︷ ︸
= −ℵγαβ∇γΛ

where the term in brackets vanishes if and only if the torsion is zero or the functionΛ
is covariantly uniform. Some previous authors propose to define Fαβ := ∇αAβ −
∇βAα as electromagnetic tensor even in Riemann–Cartan geometry e.g. Smalley
(1986), de Andrade and Pereira (1999).

Remark 6.33 At the end of this paragraph, we remind that the present Lagrange-
Noether method enables to obtain a symmetric energy-momentum which differs
from the original Minkowski energy-momentum one e.g. Obukhov and Hehl (2003).
We also point out the possibility that there is no need of additional energy density
component to the universe (explicitly by Λ), but rather that the accounting for
(uniform) torsion field ℵ0 modifies the equations of general relativity and by the
way the change of Minkowski spacetime (M ) to Anti-de Sitter spacetime (A dS ),
owing that the A dS /CFT correspondence may be considered as a link between
gravitation and quantum physics (Maldacena 1998). Indeed, this is conform to the
interest on studying quantum fields in an Anti-de Sitter (A dS ) spacetime.

6.5.3.2 Bridge to Riemann–CartanMedium due to Electromagnetism

In a paper Oprisan and Ziet obtained the Reissner-Nordström metric by solving the
Einstein–Cartan equation fields in a Tele Parallel Gravitation theory (Oprisan and
Zet 2006). They have considered TPG with the basic arguments: the tetrads F iμ and
the spin connection ωμνi from which they introduced classical formulation of the
metric and the connection coefficients and then the torsion and the curvature tensor:
gμν := gijF

i
μF

j
ν , Γ ρμν := F

ρ
i ∂μF

i
ν . Then looking for spherically symmetric (and

static) solution form metric they arrive to the Reissner-Nordström metric solution.
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Now from the system of equations governing the interaction of gravitation and the
electromagnetism (6.110), it is worth to focus on the third equation and remind it as
(for the sake of the simplicity we assume that the tangent tensor does not depend on
the torsion):

ℵγαβ = 2εχ
(∇γ Aα − ∇αAγ

)
Aβ (6.112)

which suggests that the electromagnetic field is potentially a generator of a
skew-symmetric contribution, that is torsion, of the affine connection. In other
words, electromagnetism interacting with gravity is source of change of Riemann
continuum to Riemann–Cartan continuum by means of Eq. (6.112). The present
study concludes that the use of TPG is not mandatory to study the interaction of
electromagnetism with gravitation. We have considered in the present study the
Hilbert–Einstein action (which is the simplest case among numerous gravitation
theories) to relate electromagnetism and gravitation with the extended spacetime
with torsion.

6.5.4 Geodesics in a Anti-de Sitter Spacetime

We have shown that a uniform distribution of torsion field ℵ0 leads to an anti-
de Sitter spacetime with the metric (6.106) with nevertheless a difference that
the obtained spacetime has non vanishing torsion field. In this model, the torsion
field acts anyhow like a vacuum energy (cosmological constant) which may be
considered in some sense as a variable unifying some aspects of physics as
superstring, cosmology and astrophysics. If we are interested to search for geodesics
of the spacetime rather than on his autoparallels, we can again consider an analogous
Lagrangian as for Schwarzschild:

L = m∗
[(

1− 2m

r
+ ℵ

2
0

3
r2

)

(ẋ0)2 (6.113)

−
(

1− 2m

r
+ ℵ

2
0

3
r2

)−1

ṙ2 − r2θ̇2 − r2 sin2 θϕ̇2

⎤

⎦

of a point of mass m∗ in motion within this (A dS ) spacetime. We remind that
ℵ2

0 characterizes the intensity of the torsion field. Solving the Euler–Lagrange
associated to the (A dS ) metric leads to the geodesics. The dot means derivative
with respect to proper time τ . Since the Lagrangian L does not explicitly depend
on the x0 and ϕ, there are two conserved quantities: the energy associated to time
variable x0, and the angular momentum associated to ϕ, as for Eq. (5.118). The



6.5 Einstein–Cartan Gravitation and Electromagnetism 295

derivative of the Lagrangian with respect to ẋ0 and ϕ̇ are constant of motions:

⎧
⎪⎪⎨

⎪⎪⎩

m∗ dx
0

dτ

(

1− 2m

r
+ ℵ

2
0

3
r2

)

= E

m∗ dϕ
dτ

r2 sin2 θ = L
�⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u0 = E

m∗

(

1− 2m

r
+ ℵ

2
0

3
r2

)−1

uϕ = L

m∗
1

r2 sin2 θ

(6.114)

where, again, E is the energy, and L the analogous of angular momentum in rela-
tivistic gravitation. For the sake of the simplicity, if we consider initial conditions
as θ = π/2 and uθ := θ̇ = 0, the angular momentum induces uϕ = L/mr2. This
means that the motion remains confined in the plane θ = π/2. We then deduce:

L = E2

m∗

(

1− 2m

r
+ ℵ

2
0

3
r2

)−1

−m∗
(

1− 2m

r
+ ℵ

2
0

3
r2

)−1

ṙ2 − L2

m∗r2
(6.115)

where we can consider respectively the massive particle L = ε = 1, and non-
massive particles (photons)L = ε = 0. This allows us to calculate the four-velocity
ur := ṙ for each case:

ur = ±
√√√
√ E2

m∗2 −
(

1− 2m

r
+ ℵ

2
0

3
r2

)(
ε + L2

m∗
1

r2

)
(6.116)

provided the term under square root is positive. As for the case of Schwarzschild
metric without torsion, it is worth to define an effective potential:

Veff (r) :=
(

1− 2m

r
+ ℵ

2
0

3
r2

)(
ε + L2

m∗
1

r2

)
(6.117)

Again, as for the Schwarzschild metric, circular orbits ur := ṙ ≡ 0, for also each
case were determined in a systematic way in e.g. Hackmann and Lämmerzal (2008)
(m∗ = 1 in this reference). Orbits are classified with respect to the energy E and
the angular momentum L, and where the cosmological constant Λ is considered as
parameter. The effective potential (6.117) permits to solve two particular cases of
radial motions L = 0 and bound orbits L �= 0.

Remark 6.34 Extension of the geodesic deviation equation to Riemann–Cartan
spacetime was already done in the past e.g. Manoff (2001b). In the present paper, we
slightly modify the formulation by highlighting a second term which is expressed
explicitly in terms of torsion. This constitutes an extension of the geodesic deviation
of Einstein relativistic gravitation to autoparallel deviation of Einstein–Cartan
gravitation. Basically Eq. (5.121) includes two terms: the first one corresponds to the
bending of spinless particles moving within a gravitational field, whereas the second
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term one acts on the particle as a consequence of the torsion of the spacetime. It is
observed that for a non curved, but gravitation with torsion, there is a separation
of autoparallel curves. At least from the theoretical point of view, the possibility
to detect the torsion field appears in Eq. (5.121). This possibility was sketched
as perspective in Nieto et al. (2007) where the covariant form of the relativistic
top deviation was stated, in presence of spin. This extension of deviation equation
explicitly demonstrates that even in a non curved spacetime, the torsion influences
the path of the spinning particles. This gives an answer to the third argument
advocated by Manoff’s paper (Manoff 2001b).

Remark 6.35 It should be mentioned that the geodesics we found are not the
geodesics of the Einstein–Cartan spacetime since the symmetric part of the con-
tortion tensor does not vanish. We remind the integral curves defined by both the
Levi-connection coefficients from metric (6.113) and the symmetric part of the
contortion tensor (6.103):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g00 :=
(

1− 2m

r
+ ℵ

2
0

3
r2

)

g11 := −
(

1− 2m

r
+ ℵ

2
0

3
r2

)−1

g22 := −r2

g33 := −r2 sin2 θ

, (6.118)

⎧
⎨

⎩

T0
23 = Ω0

23 = ℵ0, T0
32 = −T0

23
T2

03 = g22g00 Ω
0
23 = g22g00 ℵ0, T2

30 = T2
03

T3
02 = g33g00 Ω

0
32 = −g22g00 ℵ0, T3

20 = T3
02

(6.119)

projected onto different bases (take care). The are introduced into Eq. (5.127):

Duγ

Dτ
:= duγ

dτ
+ Γ γμνuμuν +Dγμνuμuν = 0 (6.120)

Considering the influence of the torsion in the spacetime model remains an
open question even in the framework of classical physics (in the sense of no
quantum approach). Focusing on the gravitation and electromagnetic interaction,
on the one hand, it was already observed by e.g. Kleinert (2008) that the third
equation of the system (6.110) would induce that background electromagnetic
radiation (microwave) of the universe would create a non propagating torsion
field. This suggests that the spacetime may be better modeled by a Riemann–
Cartan manifold rather than by a Riemann manifold one. On the other hand, the
amplitude of the torsion field (density of spacetime defects) would be extremely
“unnatural” small since it is equal to the cosmological constant, and even be out
of reach of experimental measurements as reminded by e.g. Bull et al. (2016),
Hehl et al. (1976), Kleinert (2008). However, the previous finding (6.105) that the
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torsion ℵ0 may be directly related to the cosmological constant Λ may give new
interesting insights for further indirect measurement of this background torsion
field, becoming a link between local spacetime properties and the large scale
universe. The dark energy can be described by means of unknown contribution as
cosmological constant Λ, and it was suggested in the past if geometric arguments
might be used to tackle the dark energy problem e.g. Bamba et al. (2013). In this
reference, the existence of other gravitational waves than those based on Einstein
curvature based fields is investigated by means of teleparallel gravitation theory.
Again in this previous reference, the authors have shown that gravitational waves in
the framework of teleparallel gravity were the same as those in the framework of
classical relativistic gravitation of Einstein. In the present book, we have a slightly
different approach since we have shown that the cosmological constant Λ, at least
for negative values, may be approached in a Riemann–Cartan spacetime. In fine,
the cosmological dark energy may have both unknown contributions origin and
geometric origin too.

Combining the results of the two Chaps. 5 and 6, we may suggest on the other
hand that electromagnetic field is potentially source of torsion, and that torsion is
itself potentially source of the cosmological constant, the dark energy. These two
suggestions are supported by simple and explicit examples.

6.6 Summary on Gravitation-Electromagnetism Interaction

In this section, we mainly consider the intimate link between the electrodynamics
and the geometry of the continuum where the electromagnetic waves are propagat-
ing. Considering a very simple shape of the Lagrangian (the same form for all the
models), we extend the geometry structure from the flat spacetime to curved and
then non zero torsion and curved spacetimes.

Relativistic gravitation theory is commonly based on the design of the spacetime
geometry, namely the definition (or the determination) of the metric tensor gαβ(xμ)
in the presence of massive body which causes the gravitational forces. The
spacetime metric underlying the electromagnetism theory leading to the Maxwell’s
equations was initially based on the uniform Minkowski metric. In order to
analyze the interaction of electromagnetism and the gravitation, the development
of the Maxwell’s equations within curved continuum shows the electromagnetism-
gravitation mutual influence by means of the geometry characterized by metric,
Levi-Civita connection, and associated Ricci curvature. When dealing with the so
called second gradient continuum, where abrupt gradients of physical properties
may occur, the extension of the Maxwell’s equations, namely the resulting wave
propagation, is necessary to account for the non zero torsion ℵγαβ �= 0 and non zero

curvature �γαβλ �= 0. Among numerous approaches, the use of Riemann–Cartan
manifold as underlying geometrical structure is worth e.g. Fernando et al. (2012).
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Table 6.2 Theories of electromagnetism interacting with gravitation in curved spacetimes:
Minkowski (flat), and Riemann (curved)

Minkowski Special relativity

Spacetime metric gαβ := {+,−,−,−} g := √|Detgαβ |
Electromagnetic tensor Γ

γ

αβ ≡ 0 Fαβ = ∂αAβ − ∂βAα
Constitutive laws L := −1

4
FαβFαβ g Fαβ = ε0 g

αμgβνFμν

Conservation laws ∂βF
αβ = 0 gνβ∂ν∂βA

μ = 0

Riemann Einstein gravitation

Spacetime metric gαβ := gαβ(xμ) g := √|Detgαβ |
Electromagnetic tensor Γ

γ

αβ (Levi-Civita) Fαβ = ∇αAβ − ∇βAα
Constitutive laws L := −1

4
FαβFαβ g Fαβ = ε0 g

αμgβνFμν

Conservation laws ∇βFαβ = 0 gνβ∇ν∇βAμ − gμα�αγ Aγ = 0

We report on the table below the overview of interaction of electromagnetic
waves with various spacetimes from the simplest to the complicated ones. Table 6.2
displays most classical approaches for analyzing the interaction of the electro-
magnetic waves with gravitation and more generally the geometric structure of
spacetimes underlying the gravitation e.g. Ryder (2009).

For the first two spacetimes, the basic geometric variable is the spacetime
metric tensor: uniform for Minkowski (Special Relativity) and depending on the
coordinates xμ for Riemann spacetime (Relativistic Gravitation). We observe that
the Minimal Coupling Procedure induces the interaction of the electromagnetic
waves with the spacetime curvature, by means of the Ricci curvature. This is pointed
out by the shape of the field equation e.g. de Andrade and Pereira (1999), Smalley
(1986).

Relativistic gravitation may be also approached by using the Tele Parallel
Gravitation, the tetrads are introduced prior to the metric, then the electromagnetic
tensor is defined by means of the Levi-Civita connection associated to the induced
metric tensor. The electromagnetic waves interact with the spacetime via the Ricci
curvature (calculated from the change of curvature defined with the contortion
tensor). The last model in the framework of Riemann–Cartan Gravitation (e.g.
Sotiriou and Liberati 2007) may highlight some problems of gauge invariance
since the electromagnetic tensor does not satisfy the Lorenz gauge invariance (say
U(1) gauge invariance) e.g. Puntigam et al. (1997). This may hurt at first sight,
however, more investigations should be conducted since the concept of magnetic
monopole enters into the discussion because the Gauss law on magnetic flux should
be re-analyzed in such a case e.g. Fernando et al. (2012). The two non zero
torsion and /or curved spacetimes are displayed in Table 6.3. It is striking that
Eq. (6.110) we obtained, is analogous to the particular contortion tensor T

γ
αβ =

−(G/c4)F
γ
β Aα found in this later paper by Fernando and co-workers. Indeed, they

have deduced that this the particular connection defined by Γ γαβ := Γ γαβ+T
γ
αβ of the
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Table 6.3 Theories of electromagnetism interacting with gravitation in curved spacetimes with
torsion: Weitzenböck (non zero torsion, not curved) and Riemann–Cartan (non zero torsion and
curved)

Weitzenböck Teleparallel gravitation

Spacetime metric gαβ := gijF iαF jβ g := √|Detgαβ |
Electromagnetic tensor Γ

γ
αβ := Fγi ∂αF iβ = Γ γαβ + T

γ
αβ Fαβ = ∇αAβ − ∇βAα

Constitutive laws L := −1

4
FαβFαβ g Fαβ = ε0 g

αμgβνFμν

Conservation laws ∇βFαβ = 0 gνβ∇ν∇βAμ − gμαKαγ A
γ = 0

Riemann–Cartan Einstein–Cartan gravitation

Spacetime metric gαβ := gαβ(xμ) g := √|Detgαβ |
Electromagnetic tensor Γ

γ

αβ Fαβ = ∇αAβ − ∇βAα
Constitutive laws L := −1

4
FαβFαβ g Fαβ = ε0 g

αμgβνFμν

Conservation laws ∇βFαβ = 0 gνβ∇ν∇βAμ + gμαℵγνα∇γ Aν −
gμα�αγ Aγ = 0

Riemann–Cartan spacetime which allowed them to derive the two Maxwell’s
equations:

∇βFαβ = ∇βFαβ = 0, ∇[βFαβ] = ∇[βFαβ] = ∂[βFαβ] = 0

Remark 6.36 For this particular connection of the Riemann–Cartan spacetime, the
model is Lorenz gauge invariant.

For instance, following another path Poplawski suggested to define the four-
potential as a part of the trace of the torsion itself e.g. Poplawski (2010). All these
aspects will certainly constitute future research topics. We observe that the both
the torsion and the curvature influence the electromagnetic wave propagation in
the Einstein–Cartan–Maxwell framework. Despite the crucial point on the Lorenz
gauge invariance, this model seems to extend and thus include all previous models.

Remark 6.37 As a final remark of this chapter, the geometrization of gravity was
first developed by Einstein. He recognized that gravity is due to the bending of the
spacetime � �= 0 and that gravity is indistinguishable from an accelerating inertial
frame. The dependence of the Lagrangian on the curvature tensor is the starting
point for deriving the gravity field equations (Einstein equations).

At a second step, from this finding and by introducing the tensor Faraday
including electric and magnetic fields—within the Lagrangian, it is recognized that
the light, which is a particular case of electromagnetic waves, bends if viewed
from a uniformly accelerating frame and then accordingly that the gravity would
therefore bend the light. Electromagnetism is governed by Maxwell’s equations.
The interaction of gravitation and electromagnetic waves are described Einstein–
Maxwell’s equations.
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The geometrization of the electromagnetic fields constitute the third step when
these fields are present in the spacetime. For that purpose, we have considered an
extended spacetime where curvature and torsion are not present, Riemann–Cartan
spacetime. By observing the third equation, we conclude that the gravitational and
electromagnetic fields are respectively identified as geometric objects of t such a
spacetime, namely the curvature �γαβλ and the torsion ℵγαβ .



Chapter 7
General Conclusion

The axiomatic foundations of relativistic gravitation and electromagnetism were
proposed by Hilbert by assuming two axioms. The first is the Mie axiom stating
that the Lagrangian L depends on both the space metric and their first and second
derivatives, and on the electromagnetic potential and their first derivatives. The
second is the covariance of the Lagrangian with respect to arbitrary transformations
of coordinates of the spacetime. Most of field equations governing theoretical
physics are obtained from a variational principle after defining a Lagrangian
function and its arguments including both the generalized coordinates (xμ), and
the fields with their derivatives (Φi,Φiμ1

, · · · ,Φiμ1···μn). Invariance of Lagrangian
and associated fields equations includes two aspects. First, passive diffeomorphism
(covariance) is a mathematical requirement stating that it should be possible to use
different coordinates to describe one physical situation (change of coordinates).
Covariance dictates that physics laws (conservation laws, and constitutive laws)
keep the same form, regardless of the coordinate system. Second, invariance with
respect to an active diffeomorphism implies that any solution of the field equations
can be transformed and still satisfies the same, untransformed field equations.
The invariance group may be deduced from axioms of causality principle or the
invariance of light velocity in relativistic theory. The invariance with respect the
complete group of Poincaré including the Lorentz group (generated by three spatial
rotations, and three boosts), and the spacetime translations together with dilations
are considered throughout this book.

In the first part of the present book, we show that covariance imposes that
Lagrangian depends only on metric, on torsion, and on curvature L(g,ℵ,�). This
result holds both for second strain gradient continuum, and for Einstein–Cartan
gravity in relativistic mechanics. The arbitrariness of the connection choice is
related to the frame-indifference principle. We do not investigate the concept of
spinning particle by introducing explicitly metric and spin tensor as geometric
arguments. Our method lies more on the Taylor expansion of the metric by means
of independent connection on the continuum or on the spacetime manifolds.
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In a second part, we derive field equations by using the gauge invariance where
Lie derivatives of metric, torsion, and curvature were the worth primal variables for
that purpose. Extension to local translation for obtaining local Poincaré invariance
is done. Dependence of Lagrangian on the three tensors, and not on any other non
invariant arguments might be a guideline to design the Lagrangian density either for
the spacetime for relativistic gravitation or the matter for strain gradient continuum.
It seems that Einstein–Cartan manifold would be more convenient than Riemannian
manifold. The knowledge of the metric, the torsion, and the curvature tensors
allows us to define, at least locally, the entire geometry structure of a Einstein–
Cartan manifold (continuum body and spacetime). We do not consider multipole
models where additional arguments of the Lagrangian function are not torsion
and curvature of the connection but rather some internal spin tensor, or angular
momentum independently on the connection. When curved matter with torsion is
in evolution within a curved spacetime with torsion too, the method for coupling
both of them remains an open problem. We have suggested in the present work the
concept of generalized deformation including the change of metric strain but also
the change of internal topology, characterized by the contortion tensor T and its
covariant derivative based on the Levi-Civita connection. This is different of the
change of torsion with respect to the spacetime. In such a case the general form of
the Lagrangian is modified to include the spacetime geometry and the generalized
deformationS := ∫ L(ĝαβ , ℵ̂γαβ, R̂γαβλ; εαβ,Tγαβ ,Kγαβλ) ωn. Beyond the covariance
formulation of equations which is mathematical requirement for any mathematical
models. Invariance was also used to define both the constitutive laws for stress and
the hypermomenta by means of the Lagrange variations Δεαβ , ΔTγαβ , and ΔKγαβλ,
and the associated conservation laws by means of the Lie derivative variations
Lξ εαβ , LξT

γ
αβ , and LξK

γ
αβλ. The arbitrariness of the vector field ξα induces the

conservation laws. The last two chapters deal with some selected topics in the
domain of continuum mechanics and electromagnetism interacting with gravitation.
A system of equations involving both the gravitation, the electromagnetism and the
presence of torsion is suggested at the end of the last chapter. The role of the torsion
and the curvature in the derivation of conservation laws id highlighted particularly
for elastic and electromagnetic wave propagation within a non homogeneous
media modeled with Riemann–Cartan manifolds. It is illustrated by fundamental
examples in continuum mechanics (5.23) and electromagnetism (6.88), namely on
the influence of the geometric structures as torsion and curvature of the connection
of the wave propagation. It may also give new insights to go further in the
development of physics in the framework of Riemann–Cartan spacetime, namely
the role of the torsion tensor related to the presence of cosmological constant in the
gravitation theory.



Appendix

A.1 Lorentz Transformation

We remind the two postulates of the special relativity theory: (1) physics laws are
the same (have the same shape) in two referential frames in relative constant motion
(no rotation); (2) the speed of light c is finite and independent of the motion of its
source in any referential frame e.g. Ryder (2009).

Let consider two inertial frames R and R̃ with relative uniform and constant
velocity v, assumed to be along the x1 and x̃1 axis (without loss of the generality of
our purpose). The length element within these two inertial frames takes the form of:

ds2 := gαβdxαdxβ, ds̃2 := g̃μνdx̃μdx̃ν (A.1)

where the metric are gαβ := {+1,−1,−1,−1} and g̃μν := {+1,−1,−1,−1}
respectively. We assume that the origin of the axis coincides at times x0 := ct = 0
and x̃0 := ct̃ = 0. The linear transformation between the two coordinates of the
frames R and R̃ is given by:

x̃μ = Λμα xα

For the particular case we are interested in, this transformation takes the form of:

⎧
⎪⎪⎨

⎪⎪⎩

x̃0 = Λ0
0 x

0 +Λ0
1 x

1

x̃1 = Λ1
0 x

0 +Λ1
1 x

1

x̃2 = x2

x̃3 = x3

(A.2)
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since there is no motion along the direction x2 and x3. The Lorentz transformation
is defined as the transformation that verifies the invariance of the length:

gαβx
αxβ = g̃μν x̃μx̃ν �⇒ (x0)2 − (x1)2 ≡ (x̃0)2 − (x̃1)2 (A.3)

Consider a particle at rest with respect to the inertial frame R such that x1 = 0,
its velocity as seen by an observer at rest in the referential frame R̃ is −v meaning
that x̃1 = −vx̃0. We obtain:

{
x̃0 = Λ0

0 x
0

x̃1 = Λ1
0 x

0 �⇒ Λ1
0

Λ0
0

= −v

The same reasoning can be done with a particle at rest in the referential R̃ with
x̃1 = 0, its velocity as seen by an observer at rest in the referential frame R is +v
meaning that x1 = vx0. We can write:

{
x̃0 = Λ0

0 x
0 +Λ0

1 x
1

0 = Λ1
0 x

0 +Λ1
1 x

1 �⇒ Λ1
0 +Λ1

1 v = 0

We deduceΛ1
1 = Λ0

0. The transformation is written as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̃0 = Λ0
0

(

x0 + Λ
0
1

Λ0
0

x1

)

x̃1 = Λ0
0

(−v x0 + x1
)

x̃2 = x2

x̃3 = x3

(A.4)

Applying the second postulate of special relativity stating that a light pulse must
propagate with the same speed in both referential frames, we have x̃1 = x̃0 and
x1 = x0, then:

Λ0
1

Λ0
0

= −v (A.5)

Introducing (A.5) in (A.4) and in (A.3) gives the component:

(
Λ0

0

)2 = 1

1− v2
(A.6)

The Lorentz transformation thus takes the form of:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x̃0 = 1√
1− v2

(
x0 − v x1

)

x̃1 = 1√
1− v2

(
−v x0 + x1

)

x̃2 = x2

x̃3 = x3

(A.7)
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where the time coordinate is mixed with the spatial coordinate. They cannot
be dissociated as in Newtonian mechanics (Galilean invariance). By writing the
transformation as x̃μ = Λ

μ
ν x

ν , the three matrices associated to the translation
along the vector base e1, e2 and e3 are respectively:

Λ(1) =

⎡

⎢
⎢
⎣

γ −γ v1 0 0
−γ v1 γ 0 0

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ Λ(2) =

⎡

⎢
⎢
⎣

γ 0 −γ v2 0
0 1 0 0

−γ v1 0 γ 0
0 0 0 1

⎤

⎥
⎥
⎦

Λ(3) =

⎡

⎢
⎢
⎣

γ 0 0 −γ v3

0 1 0 0
0 0 1 0

−γ v3 0 0 γ

⎤

⎥
⎥
⎦

For a uniform velocity along an arbitrary direction, the Lorentz transformation
then holds:

Λij = δij +
(γ − 1) vivj

|v|2 , Λ0
i = Λi0 = −γ vi, Λ0

0 = γ (A.8)

with γ := √1− v2−1
. We deduce the Poincaré-Lorentz transformation as:

⎧
⎨

⎩

x̃0 = γ (x0 − v · x)

x̃ = x+ (γ − 1)
1

‖v‖2 v⊗ v (x)− γ v x0 (A.9)

where x is the three-dimensional vector-position, and v is the relative velocity of the
two referential frames (remind that x0 := ct). The transformation rule where we
factorize the matrix Λ is obtained accordingly1:

⎛

⎜
⎜
⎝

x̃0

x̃

⎞

⎟
⎟
⎠ =

⎡

⎢
⎢
⎢⎢
⎣

γ −γ v

−γ v (γ − 1)

(
I+ v

‖v‖ ⊗
v
‖v‖
)

⎤

⎥
⎥
⎥⎥
⎦

⎛

⎜
⎜
⎝

x0

x

⎞

⎟
⎟
⎠

1For small relative velocity, Lorentz transformation reduces to Galilean transformation. Indeed,
the relations become when ‖v‖ << c and when replacing x̃0 := ct̃ , and x0 := ct (owing that
v→ v/c):

⎧
⎪⎨

⎪⎩

ct̃ = γ
(
ct − v

c
· x
)
� t

x̃ = x+ (γ − 1)
1

‖v‖2
v⊗ v (x) − γ v

c
ct � x− vt

(A.10)
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which gives the boost transformation along an arbitrary direction v. The rotation
transformation does not present any difficulties since the rotation is based on the
Euclidean spatial rotation as in three dimensions. Of course, spatial rotations alone
are also Lorentz transformations since they leave the spacetime element invariant.

A.2 Some Relations for the Connection

Let (yi) and (xα) two coordinate systems associated to respectively the tangent
bases {ei} and {eα}. Let∇ be an affine connection and its coefficients∇ei ej = Γ kij ek ,
and ∇eαeβ = Γ γαβeγ . The coordinate transformation of ∇ holds

Γ
γ
αβeγ = ∇eαeβ = ∇J iαei

(
J
j
β ej
)
= J iα

[
∇ei

(
J
j
β

)
ej + J jβ∇ei ej

]

= J iα
[
∇Aαi eα

(
J
j
β

)
ej + J jβ Γ kijek

]

= J iα
(
Aαi J

j
αβej + J jβ Γ kij ek

)
,

say

Γ
γ
αβ =

(
J iαJ

j
β A

γ
k

)
Γ kij + J jαβAγj . (A.11)

Let be the “double connection” ∇2 = ∇ ◦ ∇

∇eλ
(∇eαeβ

) = ∇eλ

(
Γ
μ
αβeμ

)
= ∇eλ

(
Γ
μ
αβ

)
eμ + Γ μαβ

(∇eλeμ
)

= Γ μαβ,λeμ + Γ μαβΓ γλμeγ =
(
Γ
γ
αβ,λ + Γ μαβΓ γλμ

)
eγ .

Without going into details, the coordinate transformation of ∇2 holds

Γ
γ
αβ,λ + Γ μαβΓ γλμ =

[
J iαJ

j
β J

l
λA

γ
k

(
Γ kij,l + Γ dij Γ kld

)]

+
(
J iαλJ

j
β A

γ

k + J iλJ jαβAγk + J iαJ jβλAγk
)
Γ kij

+ J iμJ lλJ jαβAγj Aμil + J iμλJ jαβAμi Aγj (A.12)

Equations (A.11) and (A.12) show that the connection ∇ and the bi-connection ∇2

are not tensors, according to (2.21). However, in the both equations, if the terms
out of the square brackets vanish then the components behave as components of
tensor. Torsion (2.22) and the curvature (2.23) are defined, with respect to the affine
connection ∇, on the base {ea} associated to coordinate system (ya).
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A.3 Algebraic Relations for Bi-connection

Again, we remind the guideline for the Quotient Theorem saying that a set of real
numbers (R) form the components of a tensor of a certain rank, if and only if
its scalar product with another arbitrary tensor is again a tensor (practically, we
attempt to obtain a scalar by a worth choice). For proving the Quotient Theorem, we
extend in this section the Lemma 3.2 by adding terms Λij,klhij,kl . Adding fourth-
order tensor is mandatory because we deal with the presence of curvature in the
Lagrangian function.

A.3.1 Identification of Coefficients

Let us apply the Lemma 3.2 to the equation

Λij,klhij,kl +Λij,khij,k +Λijhij = Λij,klhij |k|l +Πij,khij |k +Πijhij ,

for the identification of the coefficients of hij,k and hij . Let us remind that

Λij,klhij |k|l = Λij,kl [hij,kl − Γ aikhaj,l − Γ ajkhia,l − Γ aik,lhaj − Γ ajk,lhia
− Γ bil hbj,k + Γ bil (Γ cbkhcj + Γ jkc hbc)− Γ bjlhib,k
+ Γ bjl(Γ cikhcb + Γ cbkhic)− Γ bklhij,b + Γ bkl(Γ cibhcj + Γ cjbhic)]

and

Πij,khij |k = Πij,k [hij,k − Γ aikhaj − Γ ajkhia].

The equation of the coefficients of “hij,k” is

Λij,khij,k = −Λij,kl [Γ aikhaj,l+Γ ajkhia,l+Γ bil hbj,k+Γ bjlhib,k+Γ bklhij,b]+Πij,khij,k .

The following permutations are necessary to explicitly write the common factor
hij,k in all the terms in right hand side (see above):

1. a ←→ i and l ←→ k for Λij,klΓ aikhaj,l
2. a ←→ j and l←→ k for Λij,klΓ ajkhia,l
3. b←→ i then b→ a for Λij,klΓ bil hbj,k
4. b←→ j then b→ a for Λij,klΓ bjlhib,k
5. k←→ b for Λij,klΓ bklhij,b .
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Then, the symmetry of Λ and h reduces the identification of coefficients of hij,k

(1/2)(Πij,k +Πji,k) = Λij,k + 2Γ ialΛ
aj,kl + 2Γ jalΛ

ia,kl + Γ kblΛij,bl .

In the same way, the equation of the coefficients of “hij ” is

Λij hij = Λij,kl [−Γ aik,lhaj − Γ ajk,lhia + Γ bil (Γ cbkhcj + Γ cjkhbc)
+ Γ bjl(Γ cikhcb + Γ cbkhic)
+ Γ bkl(Γ cibhcj + Γ cjbhic)] −Πij,kΓ aikhaj −Πij,kΓ ajkhia +Πij hij .

The following permutations are necessary to find again the common factor hij in all
the terms in right hand side (see above):

1. a ←→ i forΛij,klΓ aik,lhaj and Πij,kΓ aikhaj
2. a ←→ j for Λij,klΓ ajk,lhia andΠij,kΓ ajkhia
3. c←→ i for Λij,klΓ bil Γ

c
bkhcj andΛij,klΓ bklΓ

c
ibhcj

4. c←→ j for Λij,klΓ bjlΓ
c
bkhic andΛij,klΓ bklΓ

c
jbhic

5. c←→ i and b←→ j for Λij,klΓ bil Γ
c
jkhbc and Λij,klΓ bjlΓ

c
ikhcb .

Then, the symmetry of Λ and h reduces the identification of coefficients of hij

(1/2)(Πij +Πji) = Λij + Γ iak,lΛaj,kl + Γ jak,lΛia,kl

− Γ balΓ
i
bkΛ

aj,kl − Γ bclΓ jbkΛic,kl

− Γ iblΓ
j
ckΛ

bc,kl − Γ jblΓ ickΛbc,kl

− Γ bklΓ
i
cbΛ

cj,kl − Γ bklΓ jcbΛci,kl

+ (1/2)Γ iak(Π
aj,k +Πja,k)+ (1/2)Γ jak(Πia,k +Πai,k).

A.3.2 Coefficients of Bi-connection

We apply the permutation between i and l, such as

S
k
ij,l + T

k
ij,l + S

m
ijS

k
lm + S

m
ijT

k
lm + T

m
ijS

k
lm + T

m
ijT

k
lm

= (1/2)
[
S
k
ij,l + S

m
ijS

k
lm + S

m
ijT

k
lm + S

k
lj,i + S

m
ljS

k
im + S

m
ljT

k
im

]

+(1/2)
[
S
k
ij,l + S

m
ijS

k
lm + S

m
ijT

k
lm − S

k
lj,i − S

m
ljS

k
im − S

m
ljT

k
im

]
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+(1/2)
[
T
k
ij,l + T

m
ijT

k
lm + T

m
ijS

k
lm + T

k
lj,i + T

m
ljT

k
im + T

m
ljS

k
im

]

+(1/2)
[
T
k
ij,l + T

m
ijT

k
lm + T

m
ijS

k
lm − T

k
lj,i − T

m
ljT

k
im − T

m
ljS

k
im

]
.

Then we develop the expression in the right hand side. We have

S
k
ij,l − S

k
lj,i + T

k
ij,l − T

k
lj,i = Γ kij,l − Γ klj,i ,

and

S
m
ijS

k
lm − S

m
ljS

k
im = (1/4)

(
Γ mij Γ

k
lm − Γ mlj Γ kim

)
+ (1/4)

(
Γ mij Γ

k
ml − Γ mlj Γ kmi

)

+ (1/4)
(
Γ mji Γ

k
lm − Γ mjl Γ kim

)
+ (1/4)

(
Γ mji Γ

k
ml − Γ mjl Γ kmi

)

S
m
ijT

k
lm − S

m
ljT

k
im = (1/4)

(
Γ mij Γ

k
lm − Γ mlj Γ kim

)
− (1/4)

(
Γ mij Γ

k
ml − Γ mlj Γ kmi

)

+ (1/4)
(
Γ mji Γ

k
lm − Γ mjl Γ kim

)
− (1/4)

(
Γ mji Γ

k
ml − Γ mjl Γ kmi

)

T
m
ijT

k
lm − T

m
ljT

k
im = (1/4)

(
Γ mij Γ

k
lm − Γ mlj Γ kim

)
− (1/4)

(
Γ mij Γ

k
ml − Γ mlj Γ kmi

)

− (1/4)
(
Γ mji Γ

k
lm − Γ mjl Γ kim

)
+ (1/4)

(
Γ mji Γ

k
ml − Γ mjl Γ kmi

)

T
m
ijS

k
lm − T

m
ljS

k
im = (1/4)

(
Γ mij Γ

k
lm − Γ mlj Γ kim

)
+ (1/4)

(
Γ mij Γ

k
ml − Γ mlj Γ kmi

)

− (1/4)
(
Γ mji Γ

k
lm − Γ mjl Γ kim

)
− (1/4)

(
Γ mji Γ

k
ml − Γ mjl Γ kmi

)
.

The sum of the four previous equalities is equal to Γ mij Γ
k
lm−Γ mlj Γ kim. Then we obtain

S
k
ij,l + S

k
lj,i + T

k
ij,l + T

k
lj,i = Γ kij,l + Γ klj,i ,

and

S
m
ijS

k
lm + S

m
ljS

k
im = (1/4)

(
Γ mij Γ

k
lm + Γ mlj Γ kim

)
+ (1/4)

(
Γ mij Γ

k
ml + Γ mlj Γ kmi

)

+ (1/4)
(
Γ mji Γ

k
lm + Γ mjl Γ kim

)
+ (1/4)

(
Γ mji Γ

k
ml + Γ mjl Γ kmi

)
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S
m
ijT

k
lm + S

m
ljT

k
im = (1/4)

(
Γ mij Γ

k
lm + Γ mlj Γ kim

)
− (1/4)

(
Γ mij Γ

k
ml + Γ mlj Γ kmi

)

+ (1/4)
(
Γ mji Γ

k
lm + Γ mjl Γ kim

)
− (1/4)

(
Γ mji Γ

k
ml + Γ mjl Γ kmi

)

T
m
ijT

k
lm + T

m
ljT

k
im = (1/4)

(
Γ mij Γ

k
lm + Γ mlj Γ kim

)
− (1/4)

(
Γ mij Γ

k
ml + Γ mlj Γ kmi

)

− (1/4)
(
Γ mji Γ

k
lm + Γ mjl Γ kim

)
+ (1/4)

(
Γ mji Γ

k
ml + Γ mjl Γ kmi

)

T
m
ijS

k
lm + T

m
ljS

k
im = (1/4)

(
Γ mij Γ

k
lm + Γ mlj Γ kim

)
+ (1/4)

(
Γ mij Γ

k
ml + Γ mlj Γ kmi

)

− (1/4)
(
Γ mji Γ

k
lm + Γ mjl Γ kim

)
− (1/4)

(
Γ mji Γ

k
ml + Γ mjl Γ kmi

)
.

The sum of the four previous equalities is equal to Γ mij Γ
k
lm+Γ mlj Γ kim. Then we have

S
k
ij,l + T

k
ij,l + S

m
ijS

k
lm + S

m
ijT

k
lm + T

m
ijS

k
lm + T

m
ijT

k
lm

= (1/2)
(
Γ kij,l + Γ mij Γ klm − Γ klj,i − Γ mlj Γ kim

)

+ (1/2)
(
Γ kij,l + Γ mij Γ klm + Γ klj,i + Γ mlj Γ kim

)
.

A.4 Lie Derivative and Exterior Derivative on ManifoldM

A.4.1 Lie Derivative

Let φ, u, and S a smooth real-valued scalar, vector and tensor fields on a finite-
dimension manifold M. Let Cn the set of sufficiently smooth sections of a tensor
bundle of type (p, q) on M. The Lie derivative with respect to a vector field ξ is a
map:

Lξ : Cn
(
T
p
q

)→ Cn
(
T
p
q

)

which is defined as follows. First, we define the Lie derivative of scalar field φ along
the vector field ξ as the directional derivative:

Lξφ := ξ [φ] = ξμ (x) ∂μφ (x) (A.13)
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Lie derivative of the scalar φ (x) coincides to covariant derivative on M. Second,
we define the Lie derivative of a vector field u is equal to the Jacobi brackets as:

Lξu := [ξ,u] , Lξ(x)u
ν (x) = ξμ (x) ∂μuν (x)− uμ (x) ∂μξν (x) (A.14)

In a Riemann–Cartan manifold endowed with an affine connection ∇ and torsion ℵ,
the Lie derivative of a vector field takes the form of:

Lξu := ∇ξu−∇uξ − ℵ (ξ,u) (A.15)

where the ℵ denotes the torsion operator e.g. Nakahara (1996). Third, Lie derivative
is defined to obey the following product rule of vector u ∈ TPM and a covector
ω ∈ TPM∗

Lξ [ω(u)] := (Lξω
)
(u)+ ω (Lξu

)
(A.16)

The Lie derivative of e 1-form ω is then a 1-form which respects:

Lξω (u) = ξ [ω (u)]− ω ([ξ,u]) (A.17)

The Lie derivative is shown to obey the Leibniz rules for wedge (ω1 and ω2 are
forms) and for tensor product (T1 and T2 are tensors):

Lξ (ω1 ∧ ω2) = Lξ (ω1) ∧ ω2 + ω1 ∧ Lξ (ω2) (A.18)

Lξ (T1 ∧ T2) = Lξ (ω1) ∧ ω2 + T1 ∧ Lξ (T2) (A.19)

For a tensor field of type (p, q) the component form of the Lie derivative is obtained
accordingly. Lie derivative thus defines a derivative which measures the change
of any tensor (for instance a 2-covariant tensor) on the manifold M following a
diffeomorphism xμ→ xμ + ξμ (xα) according to:

Lξ(x)Sμν (x) = ξα (x) ∂αSμν (x)+ Sαν (x) ∂μξα (x)+ Sμα (x) ∂νξα (x)

Knowledge of Lie derivative of vector fields allows us to calculate Lie derivatives
on all tensor bundles over M. We then get a tool for computing Lie derivatives of
all tensor fields. For other field than scalar, Lie derivative differs from covariant
derivative. For a torsion-free connection, partial derivative ∂α can be replaced with
covariant derivative ∇α , however the original definition is classically based only
on partial derivative. There is no needs of metric and connection structures on the
manifold M. For any p-form ω on M the Lie derivative is defined as:

(
Lξω

) (
u1, · · · ,up

) := Lξ
(
ω(u1, · · · ,up)

)

−
i=p∑

i=1

ω
(
u1, · · · , [ξ,ui ] , · · · ,up

)
(A.20)
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Definition A.1 For a volume-form ωn on the n-dimensional manifold M, the Lie
derivative Lξωn is also a n-form then there is a scalar function on M called
divergence of the vector field ξ(x) relative to ωn denoted divωnξ such that (Saa
1995):

Lξωn :=
(
divωnξ

)
ωn (A.21)

No metric tensor is required for the divergence definition at this stage. For connected
manifold endowed with affine connection ∇ (associated with non zero torsion and
non zero curvature), the divergence reduces to ∇αξα e.g. Rakotomanana (2003),
where the volume-form should be also compatible with the connection (Saa 1995).
For practical calculus, we resume some properties of the Lie derivative. Let A and
B be tensors of arbitrary types, ϕ a scalar function, ξ , u and v vector fields, ω a
1-form, and a and b constants. Then we have the following rules:

Lξ (A+ B) = LξA+ LξB
Lξ (ϕA) = ALξϕ + ϕLξA

Lξ (ω(u)) =
(
Lξω

)
(u)+ ω (Lξu

)

Lξ (A⊗ B) = (LξA)⊗ B+ A⊗ (LξB)
Lau+bvA = aLuA+ bLvA

(A.22)

A.4.2 Practical Formula for Lie Derivative

Component formulation of the Lie derivative of a type (p, q) tensor T = (T α1···αp
β1···βq )

may be derived as (cf. Lovelock and Rund 1975):

Lξ T
α1···αp
β1···βq = ξγ ∂γ T

α1···αp
β1···βq −

s=p∑

s=1

T
α1···αs−1 γ αs+1···αp
β1···βq ∂γ ξ

αs

+
s=q∑

s=1

T
α1···αp
β1···βs−1 γ βs+1···βq ∂βs ξ

γ (A.23)

A.4.3 Exterior Derivative

The exterior derivative of a form is the generalization of the total differential for
function, of the differential operators as gradient of function, of rotational and
divergence of vector field in the three dimensional space. We briefly remind the
exterior differentiation. Let M a differentiable manifold with or without metric and
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with or without connection. Let ω0 a function of class C1 on M. The differential of
function d : ω0 ∈ Ω0(M)→ dω0 ∈ Ω1(M) is defined by the rule:

dω0 := ∂μω0 dx
μ (A.24)

The exterior derivation is an extension of (A.24) to a map d : ωp ∈ Ωp(M) →
dωp ∈ Ωp+1(M) a p-form ωp to get a (p + 1)-form dωp.

Definition A.2 (Exterior Derivative) The exterior derivation is the unique set of
maps d : ω ∈ Ωp(M)→ dω ∈ Ωp+1(M) of p-forms which satisfy the following
properties:

1. d : ω0 ∈ Ω0(M)→ dω0 ∈ Ω1(M) is the differential of function (A.24),
2. d(ωp ∧ ωq) = dωp ∧ ωq + (−1)pωp ∧ ωq , for all ωp ∈ Ωp(M), and ωq ∈
Ωq(M),

3. d(αωp + βω′p) = αωp + βω′p, for all α, β ∈ R, and ωp,ω′p ∈ Ωp(M),
4. d(dω) = 0, for all ω ∈ Ωp(M).
For a p-form ω, the invariant expression of the exterior derivative takes the form of
e.g. Nakahara (1996):

dω(u1, · · · ,up+1) =
i=p∑

i=1

(−1)i+1ui
[
ω(u1, · · · , ûi , · · · ,up+1)

]

+
i=p∑

i<j

(−1)i+jω
([ui ,uj ],u1, · · · , ûi , · · · , ûj , · · · ,up+1

)

(A.25)

For a 1-form ω, we obtain for instance: dω(u1,u2) = u1 [ω(u2)] − u2 [ω(u1)] −
ω ([u1,u2]) where [, ] is the Lie-Jacobi brackets. For a scalar field f (xμ) on a
manifold B (with neither connection nor metric structure), the exterior derivatives
can be derived as:

df = ∂αf dxα
d(df ) = (∂α∂βf − ∂β∂αf

)
dxα ∧ dxβ

where df is a 1-form, and ddf ≡ 0 if f ∈ C2. The component formulation of a
p-form exterior derivative takes the form of:

dω =
j=n∑

j=1

∑

i1<···<ip

∂ωi1···ip
∂xj

dxj ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxip (A.26)
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Definition A.3 Consider a field of p-form ω ∈ Ωp(B) defined on a manifold B.
If the exterior derivative of ω is zero, say dω = 0 then it is said to be closed.

Definition A.4 A field of p + 1-form ω ∈ Ωp+1(B) defined on a manifold B that
can be written as the exterior derivative of a p-form η is said to be exact:

ω := dη (A.27)

For instance, for a scalar function f ∈ C2, the total differential df is a closed 1-form
because we have d(df ) = 0. For a non twice differentiable function, such is not the
case.

A.4.4 Stokes’ Theorem

One major reason to consider the exterior derivative is that the Stokes theorem
holds. Form ω ∈ Ωn−1(M) is basically a variable that can be integrated over an
oriented manifold M of dimension n, we assume with boundary ∂M. Then the
Stokes theorem takes the form of:

∫

∂M
ω =

∫

M
dω (A.28)

which is an extension the most of formulae of Stokes theorem, divergence theorem
on manifolds e.g. Rakotomanana (2003). Once again, the use of exterior derivative
needs no structure as metric and connection, and then constitute a powerful tool for
derivation of conservation laws on general manifolds. The particular case of Stokes’
theorem in a three dimensional space are the following:

1. ω is a 0-form that is a scalar function f on a open interval of the real axis with
B := [a, b] and ∂B := {a, b},

∫

∂B
ω =

∫

B
dω �⇒ f (b)− f (a) =

∫ b

a

df

which is the fundamental theorem of function integration,
2. ω is a 1-form defined on a compact oriented two-dimensional submanifold B

in a plane, with ω := ω1dx
1 + ω2dx

2 + ω3dx
3 isomorph to the vector field

w = (ω1, ω2, ω3):

∫

∂B
ω =

∫

B
dω �⇒

∫

∂B
w · ds =

∫

B
rot(w) · dS

which states that the circulation of the vector field w along the curve-boundary
∂B is equal to the flux of the curl rot(w) (axial vector across the surface B),
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3. ω is a 2-form on a compact oriented 3D submanifold B ∈ R
3, with ω :=

ω12dx
1 ∧ dx2 + ω23dx

2 ∧ dx3 + ω31dx
3 ∧ dx1, isomorph to the vector field

w = (ω23, ω31, ω12):

∫

∂B
ω =

∫

B
dω �⇒

∫

∂B
w · dS =

∫

B
div(w) · dv

expressing that the flux of the vector field w through the surface (boundary) ∂B
is equal to the divergence of the vector field w within the volume B. Here w is a
an axial vector.
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